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Total, Direct, and Indirect Effects in Logit Models 

 

Introduction 

Regression methods are indispensible tools for empirical sociological research. Many 

sociological applications compare regression coefficients of the same variable across 

models with different control variables. In linear models, the difference in these 

coefficients measures the extent to which the effect is mediated, confounded, or 

explained by the control variables. For example, stratification researchers may be 

interested in the extent to which racial differences in income are attributable to the 

uneven distribution of educational attainments across races. This kind of analysis was 

coined elaboration by Lazarsfeld (1955), and it is related to the well-known linear path 

analysis popularized by Duncan (1966; see also Bollen 1987). In linear models, the 

effect of an explanatory variable, x, on an outcome, y, may be decomposed into two 

parts, one mediated by a control variable, z, another unmediated by z. The part mediated 

by z is called the indirect effect, while the part unmediated by z is called the direct effect 

(cf. Alwin and Hauser 1975). The sum of the indirect and direct effects is called the 

total effect, equal to the effect of x on y when the control variable is omitted. 

 The decomposition into direct and indirect effects is a property of linear (OLS) 

models; total effects in logit and other non-linear binary probability models cannot be 

decomposed into the simple sum of direct and indirect effects (Fienberg 1977). Given a 

dichotomous dependent variable, y, the logit coefficient for x omitting the control 
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variable, z, will not equal the sum of the direct and indirect (via z) effects of x on y. This 

is because, in these models, the regression coefficients and the error variance are not 

separately identified; rather, the model returns coefficient estimates equal to the ratio of 

the true regression coefficient divided by a scale parameter that depends on the error 

standard deviation (e.g. Amemiya 1975; Winship and Mare 1983). Because the error 

variance differs across models these ratios do not decompose in the desired way.  

In this paper we present a method that solves this problem and enables 

researchers to decompose total effects in logit models into the sum of direct and indirect 

effects.
1
 The method is a by-product of the generalized approach developed by Karlson, 

Holm, and Breen (2011), and so it extends almost all of the decomposition features of 

linear models to logit models. It applies to all binary non-linear probability models, such 

as the logit, probit, complementary log-log and so on, as well as to cumulative 

probability models such as the ordered logit and ordered probit, and to the multinomial 

logit, although our exposition focuses on the binary logit model for the sake of clarity. 

We proceed as follows. First, we present the decomposition technique and show that the 

method may be used on average partial effects as defined by Wooldridge (2002). These 

effect measures provide researchers with more interpretable decompositions than those 

obtained with logit coefficients. Second, we give a statistical test for the indirect effect. 

Finally, we present examples to show how the method works for both continuous and 

discrete variables of interest.  

 

Total, direct, and indirect effects in a logit model 

                                                 
1
 We use the word „effect‟ in the sense in which it is commonly used in much social science: we do not 

discuss the assumptions that would be required to consider these effects causal (see Sobel 2008; 

VanderWeele 2010). 
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In this section we begin with a description and graphical illustration of total, direct, and 

indirect effects in a linear model, and then proceed to the binary logit model. Then we 

show how a total logit coefficient may be decomposed into its direct and indirect parts. 

Greater detail on the relevant mathematical derivations may be found in Karlson, Holm, 

and Breen (2011) on which we draw heavily. Our notation follows Blalock (1979). 

 

The linear model 

Let y be some continuous outcome of interest (e.g., respondent‟s income), let x be a 

continuous variable whose effect we want to decompose or “explain” (e.g., parent‟s 

income), and let z be a continuous control variable that potentially mediates the x-y 

relationship (e.g., respondent‟s educational attainment measured in years). We center all 

variables on their respective means and so we do not need to include intercepts in our 

models. Define the two following models: 

 yxy x e       (1) 

 yx z yz xy x z v     ,    (2) 

where yx  is the gross effect of x on y, yx z   is the net effect of x on y given z, and yz x   

is the net effect of z on y given x. e and v are random error terms. The difference 

between the beta-coefficients in the two models expresses the extent to which the x-y 

relationship is mediated, confounded, or explained by z: 

 yx yx z     .     (3) 

The difference in (3) may also be expressed in other terms. Define the following linear 

model relating x to z: 

 zxz x w  ,     (4) 
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where 
zx  captures the effect of x on z, and w is a random error term. Using the 

properties of linear models and following Clogg, Petkova, and Haritou (1995a), it is 

easy to show that 

 
yx yx z zx yz x         .    (5) 

We prove (5) in the Appendix.  

 Following Duncan (1966) we can decompose the total effect of x on y into a 

direct effect net of z and an indirect effect mediated by z: 

 Direct:  yx z       (6a) 

 Indirect:  zx yz x       (6b) 

 Total:     yx yx z zx yz x       .    (6c) 

The gross effect of x on y is the simple sum of the net effect of x on y given z and the 

product of the effect for x on z and the net effect of z on y given x. Readers may note 

that the expression of the total effect is equivalent to the omitted variable bias formula 

known from econometrics. The only difference is that in our example the control 

variable, z, is observed. Figure 1 illustrates the system defined by Equations (2) and 

(4).
2
 We see that the indirect effect is the effect of x on y running through z, while the 

direct effect is the residual effect of x on y (net of z). 

 

The binary logit model 

The foregoing holds for linear (OLS) models and continuous outcomes. However, 

sociologists often work with discrete outcome variables. For example, educational 

researchers study binary educational decisions, demographers study death, 

                                                 
2
 Note that Figure 1 illustrates the system as fully recursive system in which z is an intervening variable. z 

may, however, also be placed “behind” x in the system or as a variable on the same recursive level as x. 

We use the illustration in Figure 1 because it depicts how the indirect effect via z is calculated. 
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organizational researchers study promotion, and political sociologists study voting 

behavior. Therefore sociologists often prefer to use non-linear probability models for 

discrete or categorical outcomes such as the logit model. However, as we will show, 

equation (5) generally does not hold for logit models. 

 Let *y  be a continuous latent variable representing the propensity of 

occurrence of some outcome (e.g., propensity to complete college), let x be an 

explanatory variable of interest (e.g., parental income), and let z be a control variable 

(e.g., respondent‟s academic ability). Readers unacquainted with the latent variable 

formulation of logit models may see *y  as a hypothetical notion or construct that we 

use for interpreting logit coefficients below.
3
 We center these variables on their 

respective means to avoid including intercepts in the following models. We define an 

underlying, latent linear model in which the latent propensity is a function of x and z: 

 . .* yx z yz xy x u    , where ( ) usd u     (8) 

where e is a random term and e  is the residual standard deviation. The model in (8) 

corresponds to the model in (2), except that *y  unobserved and we therefore cannot 

estimate zyx. and xyz. . However, we do observe a dichotomized version of *y , namely 

y , such that 

 
*1  if   

0  if  otherwise.

y y

y

 


    (9) 

                                                 
3
 However, although we motivated our exposition by presenting y* as hypothetical this need not always 

be the case. The latent variable might exist but not be fully observed, as when we only know whether a 

person‟s income falls within a given range. 



 5 

where   is a threshold, normally set to zero.
4
 The expected outcome of this binary 

indicator is the probability of choosing 1y  , i.e., ( 1) Pr( 1)E y y   . We can rewrite 

the error term in (8) such that eu   , where   is a standard logistic random variable, 

with mean zero and variance 3/2 and e  is the scale parameter of the logistic 

distribution, yielding a variance of 3/222  eu   for the error term in (10) (Amemiya 

1975; Cramer 2003).
5
 The scale parameter allows the variance of the error to differ from 

that of the standardized logistic distribution. Following the derivations in Karlson, 

Holm, and Breen (2011), we write the logit model corresponding to (8): 

 





)exp(1

)exp(
)1Pr(

..

..

zbxb

zbxb
y

xyzzyx

xyzzyx
   

 
e

xyz

e

zyx

xyzzyx zbxby






 ..

..))1(Pr(itlog     (10) 

Equation (10) makes it clear that the logit coefficients (the b‟s) are equal to the 

coefficients from the underlying linear model in (8) divided by the scale parameter of 

that same model: 

 
e

xyz

xyz

e

zyx

zyx bb






 .

.

.

. ;      (11) 

Because logit coefficients are equal to the ratio between two inherently unknown 

parameters – the underlying coefficient and a function of the underlying residual 

standard deviation – they are said to be identified only up to scale (cf. Cameron and 

Heckman 1998). The expressions in (11) also make it clear why we cannot compare the 

                                                 
4
 The categorical formulation of the logit-model known from introductory text books (e.g., Hosmer and 

Lemeshow 1989) provides another way of interpreting the logit coefficients. However, both formulations 

return identical results. For a text book description of the two different formulations we refer to Powers 

and Xie (2000). 
5
 Had we assumed   to be a standard normal random variable and e  the scale parameter of the normal 

distribution, we would have obtained the probit model. 
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coefficient of x from a logit model excluding z with the corresponding coefficient from 

a logit model including z. Whenever z has an effect on y (i.e., 0yz xb   ), a model 

without z will have a larger residual standard deviation than a model with z  because the 

latter model will explain more variation in the latent outcome. As a consequence we 

cannot separate the extent to which the change in the effect of x is due to confounding 

or to rescaling, as was noted by Winship and Mare (1984). Thus the equalities in (5) for 

linear models do not hold for logit models. 

 However, following the framework developed in Karlson, Holm, and Breen 

(2011), we may make a decomposition of a total logit coefficient into its direct and 

indirect parts. We define a linear model as in (4) relating x to z: 

 zxz x w  .     (12) 

and consider the logit model for the effect of x on y without controlling for z: 

 logit(Pr( 1))
yx

yx

e

x
y b x




        (13a) 

Which parallels the underlying linear model: 

 * yx ey x         (13b) 

with having a standard logistic distribution. The coefficient in (13b) tells us the total 

effect of x on y*, as we noted, decomposes into a direct and indirect effect. Now we 

define the following effects for the logit model,  

 Direct:  
e

zyx

zyxb


 .

.     (14a) 

 Indirect:  
e

zxxyz

zxxyzb





.

.     (14b) 

 Total:  
e

zxxyzzyx

zxxyzzyx bb





..

..


   (14c) 
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The Appendix proves that (14b) holds. (14a) is a logit coefficient representing the effect 

of x on y controlled for z and (14b) is a logit coefficient representing the effect of x on y 

that is mediated by z given by the product of the linear regression coefficient of x on z 

and the logit coefficient relating z to y net of x. These quantities can be obtained from 

equations (10) and (12). (14c) is a logit coefficient representing the sum of the direct 

(14a) and indirect (14b) effects but this is not equal to the logit coefficient in (13a) 

because there the true coefficient, yx , is scaled by e
~  whereas the direct and indirect 

effects are scaled by e . To make the total effect and the direct and indirect effects 

compatible, we rescale the total effect by e  instead of e
~ . Borrowing the terminology 

of Clogg, Petkova, and Haritou (1995a), we say that we rescale by the scale factor from 

the full model defined by (8) and (10), which we consider the „true‟ model in this case.
6
 

 Karlson, Holm and Breen (2011) show that this rescaling can be accomplished 

by replacing (13a) with the following logit model: 

 . .logit(Pr( 1)) yx z yz xy b x b z       (15) 

Here, z~ is the residualized z, that is, the residual from a linear regression of z on x (that 

is, z w ). By construction, z~ is orthogonal to x.  Karlson, Holm and Breen (2011) 

prove that  

 
e

yx

zyxb



~.        (16) 

                                                 
6
 By “true model” we do not refer to some deeper philosophical meaning of this word, but simply define 

it as the model we base our inferences on. See Karlson, Holm, and Breen (2011) for a formalized 

exposition. 
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and it follows at once that (16) is equal to (14c), that is, the sum of the direct and 

indirect effects.
7
  

 It is important to notice that because these are logit coefficients we do not 

recover estimates of the effects from the underlying linear model: rather we have 

decomposed the logit coefficients into direct and indirect effects defined up to scale––

the scale, in this case, being that of the „true‟ underlying model. However, sometimes 

researchers may want to assess the relative magnitude of the direct and indirect effects 

relative to the total effect. For example, one strand of social mobility research is 

interested in the extent to which the association between social class (x) and a binary 

educational decision (y) is mediated by academic performance (z) (Erikson et al. 2005; 

Karlson and Holm 2011). In the framework developed by Boudon (1974), the part 

mediated by academic skills is called the primary effect, while the unmediated part is 

called the secondary effect, thereby giving the decomposition a theoretical 

interpretation. For this kind of decomposition we suggest the following percentage 

decomposition: 

  %100%100%100
..

.

..

.

..

.
















zxxyzzyx

zxxyz

e

zxxyzzyx

e

zxxyz

zxxyzzyx

zxxyz

bb

b
















, (17) 

which expresses the extent to which the x-y*-relationship in a logit model is mediated, 

confounded, or “explained” by z. Because the direct and indirect effects sum to the total 

effect, it holds that the part not mediated by z, i.e., the direct part, is defined as: Direct = 

                                                 

7
 It follows because, as we already showed, xyzzxzyxyx ..   and so 

e

zyxzxzyxyx



 .. 
and 

therefore xyzzxxyzyx bbb ..  . 
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100%-Indirect. Note also that (17) does not involve a scaling parameter, and therefore 

expresses the relationship between the coefficients from the underlying linear models: 

in other words, it is a scale-free measure. We refer to Karlson, Holm, and Breen (2011) 

for other measures that assess the relative contributions of direct and indirect effects. 

 

Extensions 

So far we have provided a simple decomposition of a total logit coefficient into its 

direct and indirect parts and provided a simple percentage measure with which 

researchers may assess the relative magnitude of direct and indirect effects. Thus far we 

have considered only one control variable, but in some instances we may want to 

consider several indirect paths by which x affects y. Because the method developed by 

Karlson, Holm, and Breen (2011) extends almost all decomposition features of linear 

models to logit models, it is straightforward to replace a single z with a vector of control 

variables, zj, where j = 1, 2,…, J, and where J denotes the total number of variables in zj. 

Now we may define an underlying linear model including zj as 

*

. 1,... ( ). ,  with  ( )   and  ( / 3)yx z zJ yz j x j t t k

j

y x z t sd t           (18a) 

And the corresponding logit: 

  
j

j

k

xjyz

k

zJzyx

jzjyzzJzyx zxzbxby






 ).(,...,1.

).(,...,1.))1it(Pr(log  (18b) 

Similar to (12), we estimate J linear regression models 

 jxjzj wz  )(     (19) 

which provide us with J coefficients of the effect of x on each control variable. Each 

indirect effect is given by: 
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 Indirect:  
k

xjzxjyz

xjzxjyzb





)().(

)().(


    (20a) 

And the total effect by 

 Total:  Jzzyx

j k

xjzxjyz

k

zJzyx

xz

j

xyzzJzyx bbb
jj

~,...,1~.

)().(,...,1.

.,...,1. 


 







 . (20b) 

That 
k

Jzzyx

Jzzyxb


 ~,...,1~.
~,...,1~.  follows by analogy with (16). The full proof can be found in 

Karlson, Holm and Breen (2011).  

 

In some situations researchers will be interested in controlling the decomposition of the 

x-y*-relationship for potentially confounding variables. Following Sobel (1998) we 

name these variables concomitants. These variables allow controlling for confounding 

influence on the decomposition, that is, on the estimates of direct and indirect effects. 

Such control is unaffected by the scale identification of logit coefficients, because our 

decomposition method assures that the total, direct, and indirect effects are measured on 

the same scale. Let wi denote the i‟th concomitant, i = 1, 2, …, I, where I denotes the 

number of concomitants. We may control for the potential confounding influence of 

these concomitants on the decomposition. Assume, for simplicity, that we have a single 

control variable, z. We now define an underlying linear model wi as 

 
1 1

*

. , ... . , ... . , ,

with  ( )   and  ( / 3)

I I iyx z w w yz x w w yw x z i

i

s s l

y x z w s

sd s

  

   

   

  


   (21a) 

and the corresponding logit model 

 
1 1

1 1

. , ... . , ... . ,

. ,. , ... . , ...

logit(Pr( 1))

.

I I i

iI I

yx z w w yz x w w yw x z

yw x zyx z w w yz x w w

i

il l l

y

b x b z b w

x z w
 

  

 

  

 

,    (21b) 
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where 
l e  , because the added concomitants, insofar they explain variation in the 

latent propensity, reduce the residual variation. Now, using the equation in (12) and the 

decomposition in (14), we may decompose the total effect net of concomitants into its 

direct and indirect parts, where the latter is the part mediated by z. 

 Direct:  1

1

. , ...

. , ...
I

I

yx z w w

yx z w w

l

b



    (22a) 

 Indirect:  1

1

. , ...

. , ...
I

I

yz x w w zx

yz x w w zx

l

b
 




     (22b) 

 Total:  1 1

1 1

. , ... . , ...

. , ... . , ...
I I

I I

yx z w w yz x w w zx

yx z w w yz x w w zx

l

b b
  





   . (22c) 

Thus, replacing the logit coefficients in (10) with those in (21b) gives us a 

decomposition that is purged of the confounding effects of concomitants. The total, 

direct, and indirect effects are all measured on the same scale, and using the quantities 

in (22) for the percentage measure in (17) will therefore also be unaffected by scale 

parameters. Karlson and Holm (2011) present an example from educational 

stratification research where inclusion of concomitants in the decomposition may have a 

substantive interpretation. Thus, including concomitant variables measuring potentially 

confounding attributes ensures that the estimates of direct and indirect effects are not 

distorted by these attributes. 

 

Up to this point we have assumed that the mediating variable, z, is continuous (notice 

that x could have been continuous or dichotomous). What happens to the decomposition 

when the observed mediating variable is binary? In the linear case, where y* is 

continuous, we have: 

 vzxy vxyzzyx   ** .**.     (23a) 
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Where v is a standardized error term and z* is the dichotomous mediating variable. In 

general zyxzyx .*.   and xyzxyz ..*   . Nevertheless, given the linear model 

 ** z xz x m       (23b) 

where m is an error term, it remains the case that 

 xyzxzzyxyx .***.        (23c) 

That is to say, the total effect of x on y decomposes into a direct and indirect effect, 

given that the effect of x on z* is estimated using a linear probability model and not a 

logit or other non-linear probability model.  

 

Given y, a binary realization of y*, we estimate the logit: 

 
. * *.

. *.

*
logit(Pr( 1)) *

yx z yz x

yx z yz x

v

x z
y c x c z

 




      (24)  

Then the decomposition of the total effect into direct and indirect components is: 

 
v

xyzxzzyx

zyx

v

yx
c







 .***.

*~.


     (25) 

Where *~.zyxc is the logit coefficient for x in the model which controls for the residualized 

z*. 

 

MacKinnon and Dwyer (1993) present a method for decomposing effects in logit and 

probit models based on the y-standardization technique of Winship and Mare (1984). 

Briefly, this entails dividing the coefficients for x in each equation (in this case, 

equations 10 and 13a) by the estimated standard deviation of the predicted latent 

outcome, ŷ , for that model. The calculated coefficients are thus y-standardized, 

because they compensate for the rescaling of the “non-standardized” coefficients. 
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However, the method relies on the variance of the predicted logit index and, as Karlson, 

Holm and Breen (2011) demonstrate, whenever the prediction is skewed, the variance is 

a poor measure of dispersion, and y-standardization consequently fails as a method for 

comparing coefficients across nested models. 

 

Using average partial effects for decompositions 

The method we have presented can also be applied to average partial effects (APEs: 

Wooldridge 2002: 22-4). One advantage of APEs over logit or probit coefficients is that 

they are measured on the probability scale and are therefore intuitive and more easily 

understood than, say, partial log odds-ratios. 

 

In logit and probit models, the marginal effect, ME, of x is the derivative of the 

predicted probability with respect to x, given by (when x is continuous and 

differentiable): 

 
ˆ ˆ ˆ(1 )

ˆ ˆ ˆ ˆ(1 ) (1 )
dp p p

p p b p p
dx




 


     ,  (26) 

where ˆ Pr( 1| )p y x   is the predicted probability given x and b



  is the logit 

coefficient of x. The APE is then the average value of this derivative over the whole 

population. That is, the APE is defined as  




 
 




N

i

N

i

ii

i

i pp

Ndx

pd

N 1 1

)ˆ1(ˆ1ˆ1
   (27) 

 

If the sample is drawn randomly from the population, the APE estimates the average 

marginal effect of x in the population. 
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Figure 2 illustrates how APEs can be used in decompositions of a total effect into direct 

and indirect effects. As in Equations (14a), (14b), and (14c), we express the direct, 

indirect, and total effect in the following way (dropping the i subscript for convenience): 

 

 Direct: 





N

i

zyx

e

zyx

pp

N
bAPE

1

..

)1(1
)( 


   (28a)

 Indirect: 





N

i

zxxyz

e

zxxyz

pp

N
bAPE

1

..

)1(1
)( 


   (28b) 

Total: 








N

i

zxxyz

e

N

i

zyx

e

zxxyzzyx

pp

N

pp

N
bAPEbAPE

1

.

1

...

)1(1)1(1
)()( 





  

   = 



N

i

zxxyzzyx

e

pp

N 1

.. )(
)1(1




  (28c) 

 

Here   is, as previously, the coefficient from the linear regression of z on x;   is the 

partial underlying regression coefficient, controlling for z, of y on x;   is the partial 

logit regression coefficient, controlling for x, of y on z; and e  is the scale parameter 

residual standard deviation from the „true‟ model. The total effect is equal to the APE of 

zyx ~. as this is defined in (15) (see Karlson, Holm, and Breen 2011). 

 

A statistical test 

Drawing on the results in Sobel (1982), Karlson, Holm, and Breen (2011) develop a 

statistical test of the indirect effect using the delta method. Let b be the variance-
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covariance matrix of the coefficients xyzb . and zx , and define xyzbb . , zx   and 

zxxyzbf . . Then the asymptotic standard error of the indirect effect is given by 

 aΣa bθ
N

)b(bes yx.zzyx.

1
 . ~      (29) 

where N is the sample size and a is the vector of partial derivatives of the indirect effect, 

with respect to the parameters, b and  : 






 f

b

f
, . 

Equations (10) and (12) form a recursive system of simultaneous 

equations, and so xyzb . and zx are asymptotically independent, and thus b is a diagonal 

matrix whose entries are the asymptotic variances of the two coefficients (Sobel 1982: 

294-5). We divide this by N to obtain the asymptotic standard errors.    

This method extends easily to the case in which there are J z variables and 

thus J indirect effects. Now we define θb


j

xjzxjyzbf )().(   and b and   are column 

vectors and a is the 2J ×1 column vector whose entries are  

 

JJ

fff

b

f

b

f

b

f

 






















,...,,,,...,,

2121

 

 

Where the subscripts indicate the elements of the vectors b and  . b  is a diagonal 

matrix of dimension 2J and once again, (29) follows directly. 

Given the standard error of the indirect effect we can test its significance 

in the usual way using the test statistic, Z which, in large samples, will be normally 

distributed: 
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aΣa bθ





)( .~. zyxzyx bbN
Z     (30) 

 

Examples 

In this section we turn to two examples based on the National Educational Longitudinal 

Survey of 1988 (NELS). NELS is a nationally representative survey of 8
th

 grade 

students in the US in 1988 who were followed until the year 2000, giving us the 

opportunity to study educational progress. We examine how much of the effect of 

parental socio-economic status (SES) on four year college graduation (COL) by year 

2000 is explained or mediated by student academic ability (ABIL) and level of 

educational aspiration (LEA).
8
 We standardize SES, ABIL, and LEA to have mean zero 

and variance of unity. Because we expect ability and aspirations to be positively 

correlated with parental SES and college graduation (e.g., Boudon 1974, Keller and 

Zavalloni 1964), we expect that both ability and aspirations mediate the effect of 

parental SES on college graduation. We also investigate which of ability and aspirations 

is the larger mediator. Because we suspect the decomposition to be affected by 

potentially confounding variables, we also include concomitants, gender (MALE), race 

(RACE), and intact family (INTACT). The final sample comprises 9,820 individuals, 

and Table 1 contains the descriptive statistics.
9
 We calculate the decompositions using 

the Stata command khb (Kohler, Karlson, and Holm 2011), which implements the 

method developed by Karlson, Holm and Breen (2011). 

                                                 
8
 Within educational stratification research such empirical decompositions of family social status effects 

on educational decisions have received considerable attention, because they link to a theoretical model 

developed in a classic work on inequality of educational opportunity by Raymond Boudon (1974) and its 

generalization by Breen and Goldthorpe (1997) (see Erikson et al. 2005; Morgan 2010). 
9
 Because we use the NELS Public Use File, the original sample comprises around 12,144 individuals. 

Because this example acts as an illustration of our method, we do not discuss the nonresponse patterns 

and the possible biases they may entail. 
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-- TABLE 1 HERE  -- 

 

We structure the analysis in four steps. First, we decompose the effect of SES on COL 

using ABIL. Second, we add LEA to the decomposition and evaluate which variable, 

ABIL or LEA, has the larger indirect effect. Third, we add three concomitants, MALE, 

RACE, and INTACT to the decomposition to control for possibly confounding 

variables. Fourth, we report the results in terms of average partial effects, giving the 

decomposition a more substantive interpretation. Because the results may be sensitive to 

model choice, we report them for both logit and probit models. 

 Table 2 reports the results of a decomposition of SES on COL with ABIL as 

the mediator. Using the formulas in (14), we decompose, in logits (probits) the total 

effect of 1.348 (0.781) into a direct part, 0.914 (0.524), and an indirect part, 0.434 

(0.257). Using the formula for the z-statistic in (30), we see that all effects are highly 

statistically significant. We also see that the indirect effect is around half the magnitude 

of the total effect. In relative terms, the indirect effects accounts for 32.2% of the total 

effect in the logit model and 32.9% in the probit model. In the second row from the 

bottom of Table 2 we label this the confounding percentage. This is very similar for the 

logit and probit, indicating that our decomposition is not sensitive to the choice of a 

normal or logistic error distribution. In the final row we report the naive confounding 

percentage, which is what we would have obtained had we simply compared the 

coefficients across models with and without ABIL. This is 25.3% for the logit model 

and 26.8% for the probit model, indicating that a naive comparison of effects would 

underestimate the true amount of confounding net of rescaling. 
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-- TABLE 2 HERE  -- 

 

In Table 3 we add LEA to the decomposition and break down the indirect effect due to 

both ABIL and LEA into its respective components. We see that all effects are highly 

statistically significant. Because the logit and probit return near-identical results, we 

focus only on the results based on the former. Looking at the relative measures of the 

indirect effect, we see that, compared to Table 2, the confounding percentage has 

increased from 32.2 to 56.6%. However, more of the effect of SES is mediated by LEA 

than by ABIL, LEA accounting for 37.5% of the total effect, ABIL for 19.1%. The 

confounding percentage for ABIL is considerably smaller than the 32.2% reported in 

Table 2. Thus, including LEA in the decomposition reduces the contribution of ABIL to 

the total effect of about 13 percentage points, and this is because LEA is positively 

correlated with SES, ABIL, and COL. We also see that the naïve use of the logit would 

underestimate the confounding percentage by about 16 percentage points (41 compared 

with 57%). 

 

-- TABLE 3 HERE  -- 

 

In Table 4 we add three concomitants, MALE, RACE, and INTACT, which we suspect 

may confound the decomposition. Using the formulae 22a to c, these concomitants are 

included in all models used for the decomposition, thereby holding constant their 

possible influence on the results. We see that the results are virtually identical to those 
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reported in Table 3. These findings suggest that the decomposition presented in Table 3 

is unaffected by the influence of the concomitants. 

 

-- TABLE 4 HERE  -- 

 

In Table 5 we report average partial effects (APE) of the results in Table 4, using 

formulae 28a to c. Because the standard error of the indirect effect is unknown, we only 

report the APEs and once again we focus on the results from the logit model. We see 

that the total effect is 0.224, which means that for a standard deviation change in SES, 

the probability of graduating college increases by 22.4 percentage points. Decomposing 

this effect returns a direct effect of 9.6 percentage points, and an indirect of 12.8 

percentage points. Breaking down the indirect effect to its two components, we find that 

the indirect effect via ABIL is 4.3 percentage points, and 8.5 percentage points via LEA. 

Thus, the effect of SES on COL running via LEA is substantially larger than the one 

running through ABIL. We note that the confounding percentages in Table 5 equal 

those in Table 4, as is evident from (28c). However, the naïve confounding percentage 

in the final column differs between the two tables. In Table 4, the naïve percentage 

conflates confounding and rescaling, while the counterpart in Table 5 conflates 

confounding with the distributional sensitivity of the APE. As we would expect, the 

naïve confounding percentage is much smaller for the APE than for the logit. APE 

underestimates the true percentage by about 3.5 percentage points compared with the 

underestimate from the logit of 16 percentage points.  

 

Discussion 
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In this paper we have reported a series of new findings about mediating or confounding 

relationships in non-linear probability models such as logit and probit models. Drawing 

on Karlson, Holm, and Breen (2011), we developed a method that decomposes logit or 

probit coefficients into total, direct, and indirect effects. We provided a statistical test 

and developed several extensions of the method; in particular we applied it to average 

partial effects, giving researchers an effect measure on the probability scale which may 

be more interpretable than logit and probit coefficients. We illustrated our method using 

data from the National Longitudinal Survey of Youth 1988 and found that it fares much 

better than naïve decompositions of logit and probit coefficients. Because naïve 

decompositions conflate rescaling and confounding, they tend to underestimate the 

degree of confounding. Average partial effects also underestimate the degree of 

confounding, though not by as much. 

 The method presented in this paper extends the decomposability properties of 

linear models to logit and probit models and can be applied when the variable of interest 

and the mediating variables are continuous or discrete. We can also include a set of 

concomitants which may confound the decomposition of interest. Perhaps most 

usefully, the method can be applied very easily using the Stata routine khb (Kohler, 

Karlson, and Holm 2011) based on Karlson, Holm and Breen (2011). As we noted 

earlier, the method we present can be extended to other models such as the ordered logit 

and probit and also to the multinomial logit and all these cases can be dealt with using 

khb. Whether the method extends to all models of the family of generalized linear 

models is a topic for future research. 
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Appendix 

For the linear model, we want to prove that  

 *    .     (A1) 

where *  is the effect of x on y in a model excluding a confounder, z,   is the 

counterpart in a model including z,   is the effect of z on y in a model including z, and 

  is the effect of x on z from a linear regression. Applying basic principles of OLS to 

the model with y as dependent variable, we may write the coefficients of x as 

2
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  (A2), 

where  r denotes the correlation coefficient. Clogg et al. (1995b) show that the 

difference between these two coefficients equals 

2
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Now, the coefficients  and   can be written as 
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The product of these two coefficients is 

2 2
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,  (A3) 

which equals (A2). We have consequently proven the equality in (A1). 

 

For the logit model we want to prove that  

*

e e

  

 


  .    (A4) 

However, multiplying both sides by e  leaves us with  
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 *    , 

which we proved for the linear model. We have consequently proven the equality in 

(A4).
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TABLES 

 

TABLE 1. Variable descriptive. N = 9,820. 
 Mean SD 

COL 0.36 - 

SES 0 1 

ABIL 0 1 

LEA 0 1 

MALE 0.47 - 

RACE   

  White (reference) 0.69 - 

  Hispanic 0.12 - 

  Black 0.09 - 

  Other 0.10 - 

INTACT 0.90 - 

 

 

 

TABLE 2. Decomposition of total effect of SES on COL into direct and indirect 

effect via ABIL. 
 LOGIT PROBIT 

 Coef. z Coef. z 

Coefficients     

 Total effect 1.348 42.06 0.781 45.23 

 Direct effect 0.914 28.90 0.524 29.57 

 Indirect effect 0.434 26.06 0.257 26.79 

Relative measures     

 Confounding percentage 32.2 - 32.9 - 

 Naive conf. percentage 25.3  26.8  

 

 

TABLE 3. Decomposition of total effect of SES on COL into direct and indirect 

effect via ABIL and LEA. 
 LOGIT PROBIT 

 Coef. z Coef. z 

Coefficients     

 Total effect 1.657 42.83 0.939 46.33 

 Direct effect 0.718 21.48 0.421 22.31 

 Indirect effect 0.938 29.08 0.518 30.67 

  via ABIL 0.317 18.87 0.192 19.78 

  via LEA 0.621 22.55 0.326 23.58 

Relative measures     

 Confounding percentage 56.6 - 55.2 - 

  via ABIL 19.1 - 20.4 - 

  via LEA 37.5 - 34.7 - 

 Naive conf. percentage 41.3 - 41.2 - 
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TABLE 4. Decomposition of total effect of SES on COL into direct and indirect 

effect via ABIL and LEA, controlling for concomitants MALE, RACE, and 

INTACT  
 LOGIT PROBIT 

 Coef. z Coef. z 

Coefficients     

 Total effect 1.634 41.31 0.927 44.3 

 Direct effect 0.702 20.43 0.413 21.25 

 Indirect effect 0.932 28.33 0.514 29.9 

  via ABIL 0.312 17.95 0.189 18.94 

  via LEA 0.620 22.20 0.325 23.21 

Relative measures     

 Confounding percentage 57.0 - 55.4 - 

  via ABIL 19.1 - 20.4 - 

  via LEA 38.0 - 35.0 - 

 Naive conf. percentage 40.9 - 40.7 - 

 

 

TABLE 5. APE decomposition of total effect of SES on COL into direct and 

indirect effect via ABIL and LEA, controlling for concomitants MALE, RACE, 

and INTACT  
 LOGIT PROBIT 

 APE APE 

Coefficients   

 Total effect 0.2242 0.2205 

 Direct effect 0.0963 0.0983 

 Indirect effect 0.1279 0.1223 

  via ABIL 0.0428 0.0451 

  via LEA 0.0851 0.0772 

Relative measures   

 Confounding percentage 57.0 55.4 

  via ABIL 19.1 20.4 

  via LEA 38.0 35.0 

 Naive conf. percentage  53.6 52.5 
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FIGURES 

 

Figure 1 Path decomposition into direct and indirect effects 

 

 

 

Figure 2 A simple path model illustrating a fully recursive system using APEs 
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