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1. Introduction 

Many outcome variables in quantitative political and social science research represent binary 

events. Individuals may vote or not vote; local governments may decide to outsource or not to 

outsource services; and voters may agree or not agree with a specific political statement. 

Researchers interested in estimating the probability that the event under study occurs typically 

employ binary choice models such as the binary logit or probit regression models.  

 

Despite their popularity this type of non-linear regression models poses a special set of challenges 

to researchers. One of the most important challenges is bias from unobserved heterogeneity. 

Estimates of the effect of independent variables on the binary outcome will be biased if the 

researcher does not observe all the relevant independent variables that affect the outcome 

(Wooldridge 2002). Bias from unobserved heterogeneity is particularly important in non-linear 

regression models because, unlike linear regression models, estimates of the effect of independent 

variables will be biased even if the unobserved heterogeneity is not correlated with the observed 

independent variables (Bretagnolle and Huber-Carol 1988; Abramson et al. 2000; Ejrnæs and Holm 

2006). 

 

Unobserved heterogeneity can be dealt with in a number of ways. If the researcher has panel data 

with repeated observations on the binary outcome of interest, unobserved heterogeneity is typically 

dealt with either by conditioning on the unobserved heterogeneity through random effects or by 

transforming the data to eliminate individual-specific fixed effects (see Halaby 2004). These 

methods reduce the potential parameter bias from unobserved heterogeneity. However, in many 

cases the researcher does not have panel data and relies on cross-sectional data with only one record 

for each observational unit. Alternatively, the researcher might have a short panel with only two 

records per observational unit. In these scenarios it is difficult to deal effectively with potential bias 

from unobserved heterogeneity because there is only little information in the data that allows the 

researcher to identify and correct for the unobserved heterogeneity. 

 

This paper proposes a new approach to dealing with unobserved heterogeneity in the binary logit 

model with cross-sectional data and short panels. Our approach is designed to reduce bias from 

unobserved heterogeneity in applied research and builds on a finite mixture binary logit (FMBL) 

framework in which we approximate the unobserved heterogeneity component non-parametrically 
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via latent classes. The latent classes capture latent sub groups in data that differ with regard to 

experiencing the binary outcome (see Goodman 1974; McCutcheon 1987). By conditioning on the 

latent classes in the FMBL model, we control for the unobserved heterogeneity and reduce bias in 

the parameter estimates of the effects of the observed independent variables. Evidence from most 

applied research suggests that only a small number of latent class is required to capture the 

unobserved heterogeneity (e.g., Heckman and Singer 1984; Davies 1993; Holm 2002).  

 

The major challenge we face is to control adequately for unobserved heterogeneity when the data is 

not very informative about the unobserved heterogeneity. This is especially the case when we have 

only cross-sectional data or short panels. We argue that our FMBL approach is preferable to the 

standard binary logit model in terms of reducing bias in the effects of observed independent 

variables even when the unobserved heterogeneity is weakly identified. Consequently, even when 

identification is weak our approach is better than not addressing unobserved heterogeneity. 

Furthermore, we propose a simple method for improving identification which fixes the weight of 

one or more latent class in the FMBL model. This method makes the FMBL model easier to 

estimate, and we show that fixing a latent class weight has only a neglible impact on the other 

parameters in the model. Finally, we argue that instead of fixing the latent class weight at an 

arbitrary value one can use an automated grid search to find the optimal weight. This model, which 

we label the Finite Mixture Binary Logit model with Fixed Weights (FMBLfw), performs well in 

simulations and could be a feasible alternative to the standard binary logit model when the 

researcher has only cross-sectional data. 

 

We run a series of simulations to evaluate the performance of our FMBL approach relative to the 

standard binary logit model. We find that estimates of the effects of observed independent variables 

are considerably less biased in the FMBL model than in the standard binary logit model. This turns 

out also to be the case when we fix a latent class weights at a pre-defined value. Our simulations 

suggest that in the FMBL model the latent classes capture some of the unobserved heterogeneity in 

the data and, in doing so they reduce bias in the effects of the observed independent variables. This 

result has implications for applied research since, by using a relatively simple method, it is possible 

to estimate an extended version of the binary logit model which is more robust to unobserved 

heterogeneity than the standard logit model. Furthermore, we illustrate the applicability of the 

FMBL model using data on public support for redistributive policies in Canada. 
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To maintain expositional clarity the paper focuses on the logit model with only a binary outcome 

variable. However, our approach easily generalizes to more complex situations, for example 

multinomial models (e.g., Jæger and Holm 2007) or duration models (e.g., Vermunt 1997; Bearse et 

al. 2007). Recent research suggests that identification problems may be less severe in these 

situations because multinomial and duration models have more information in the dependent 

variables. Consequently, it is likely that our suggested approach will be at least as useful in these 

cases. 

 

The paper proceeds as follows. Section 2 describes the finite mixture binary logit (FMBL) 

framework, bias in the standard binary logit model and identification of the FMBL with cross-

sectional and panel data. Section 3 reports results from a simulation study which, first, illustrates 

bias in the standard binary logit model, second, highlights identification problems in the FMBL 

model and, third, shows why fixing a particular parameter in the FMBL may improve identification. 

In section 4 we use Canadian panel data on public support for redistribution to illustrate the 

applicability of our approach. Section 5 concludes. 

 

2. Statistical Framework 

2.1 The Finite Mixture Binary Logit Model 

This section presents the idea behind the finite mixture binary logit (FMBL) model and compares 

this model to the standard binary logit model. The section also explains how the FMBL captures 

unobserved heterogeneity. 

 

The FMBL model can be seen as an extension of the standard binary logit model which also 

includes a latent class model that captures the effect of unobserved variables on the binary outcome 

variable. The outcome variable is Y and takes the values y = 0 and y = 1. We formulate the FMBL 

model with J (j = 1,…,J) latent classes as 

 

1 1

exp( ) ( )
( 1 | ) ( 1 | , ) ( )

1 exp( )

j J j J
j j

j j
j j j
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ε ε
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βx
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whereα  is a constant term,  is a vector of independent variables, β  is a corresponding row vector 

of regression coefficients, 

x

jε  is the effect of the j’th latent class on the probability of observing Y = 

1, and ( )jP εΞ =  is the proportion of the population that belongs to the j’th latent class. The model 

parameters to be estimated areα , ,β jε , and ( )jP εΞ = . The FMBL model takes into account 

unobserved heterogeneity arising from omitted independent variables into account through the 

inclusion of latent classes. Conceptually, the unobserved heterogeneity can be thought of either as a 

true discrete distribution of unobserved heterogeneity or as an approximation to any unknown 

distribution of unobserved heterogeneity, discrete or continuous (Lindsay 1983a, 1983b). The latent 

class proportions ( )jP εΞ =  must meet the restrictions: ( ) 0jP εΞ = 1>  and 
1

( )j j
jj

P ε=

=
Ξ = =∑ . 

Hence, it is useful to re-parameterize the model when estimating the proportions ( )jP εΞ =  to 

 

( )
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( )
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j
j j J
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P
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ε
δ=

=

Ξ = =
∑
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%
,          (2) 

 

where, now, jδ% , j = 1,…J are parameters to be estimated. Furthermore, we divide by 1δ%  to get 

 

( )
( )

( )
( )

1

12 2

exp exp
( )

1 exp 1 exp

j j
j j J j J

j jj j

P
δ δ δ

ε
δ δ δ= =

= =

−
Ξ = = =

+ − +∑ ∑

% %

% %
            (3). 

 

It follows from Equation (3) that the number of identifiable parameters for the latent class 

proportions is J –1. Furthermore, it also follows that re-defining j jε α ε= +%  

leaves ( 1 | , )jP Y ε= Ξ =x % )( 1 | , jP Y ε= = Ξ =x , j = 1,…, J and that we need to normalize one of the 

effects of the latent classes, jε . We use conventional dummy-coding and normalize 1 0ε = . 

 

In the following sections we present a simple version of the FMBL model with only one 

independent (continuous) variable and two latent classes. We use this simplified version to illustrate 

the intuition behind the FMBL model. It is conceptually straightforward to extend the model to 

 5



situations with more independent variables and latent classes. In this simple version the model is 

written as 

 
2

1

exp( ) ( )
( 1 | )

1 exp( )

j
j

j j

x P
P Y x

x
jα β ε ε
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where x is a continuous independent variable andβ  is a regression coefficient, and where 

1 0ε = and 2ε ε= . From Equation (4) we construct the log-likelihood function for a sample of n 

independent observations as 
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where  

 

( )0( 1| ) 1i iP Y x pP p Piε= = + − ,                   (6) 
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and, finally, where ( 0)  and ( ) 1P p P pεΞ = = Ξ = = − . Following Equations (2) and (3), in the case 

of only two latent classes the parameterization of the latent class probabilities is 
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TABLE 1 HERE 

 

TABLE 2 HERE 

 

In the following example we illustrate how the FMBL and the standard binary logit model might 

lead to very different estimates of the effect of the observed independent variable x on the 

probability that y = 1. Consider Table 1 which uses stylized data. From the table we find that the 

log-odds ratio that y = 1 as opposed to y = 0 as a function of the independent variable x with four 

values is approximately 1. However, suppose that the frequency distribution in Table 1 is actually 

comprised from two latent sub groups with very different frequency distributions. The distribution 

of each sub group is shown in Table 2. Here, it is evident that in both sub groups the log-odds ratio 

that y = 1 as opposed to y = 0 is actually approximately 2. Consequently, if we ignore the latent sub 

groups in the data and estimate a standard binary logit model on the data in Table 1, we obtain an 

estimate of the log-odds ratio,β , of approximately 1. Since the actual log-odds ratio in each sub 

group is approximately 2, the bias in the estimated β  is around 100 percent.  

 

TABLE 3 HERE 

 

We use the stylized data from Table 1 and estimate two regression models: A standard binary logit 

model and the FMBL with two latent classes to capture the two latent sub groups in the data. 

Results from these models are shown in Table 3. The estimate of β  in the binary logit model is 

1.175 which fits the frequency distribution in Table 1. By contrast, the estimate of β  in the FMBL 

with two latent classes is 2.026 and replicates the frequency distributions in Table 2. Assuming that 

the frequency distributions were generated according to Table 2, the binary logit model yields very 

biased estimates ofβ . Interestingly, even though the two models give very different estimates of β  

model fit according to the log-likelihood is very similar, and the ratio of the log-likelihoods of the 

two models is only 1.003.  

 

FIGURE 1 HERE 

 

To illustrate the similarities between the binary logit and the FMBL models Figure 1 plots the 

predicted probabilities of Y = 1 obtained from the two models. From the figure it is clear that, 

 7



despite very different estimates of β , there are only marginal differences between the predicted 

probabilities of the binary logit model and the FMBL model (which in this case yields perfect fit to 

the data because it represents a saturated model). It is likely that the variation in x will only yield 

minor discrepancies in predicted probabilities between the binary logit and the FMBL model. 

Furthermore, it will often be difficult to determine whether these discrepancies are due to non-linear 

effects of x on the log-odds of Y or due to the presence of unobserved heterogeneity, as captured via 

the latent classes. 

 

This result shows that the regression coefficient may be severely biased when unobserved 

heterogeneity is present even when the heterogeneity is uncorrelated with the observed independent 

variables. In the following paragraphs we show why this is the case in the standard binary logit 

model but not in the linear regression model.  

 

Consider a linear regression model in which the constant term depends on which of two latent 

classes an individual belongs to. For a fixed x we get 

 

 1 1y x eα β= + + ,          (9.1) 

2 2y x eα β= + + ,         (9.2) 

 

where e is the idiosyncratic error term and where the two classes are distributed in the population 

with probability p and 1-p. If class membership is unobserved, the observed y will be the average of 

the two y’s from each of the latent classes with respect to the distribution of the two classes 

 

 ( ) ( )( )1 11p x e p x e x eα β α β α β+ + + − + + = + +%%       (10) 

 

with ( )1 11p pα α α= + −%  and β β=% . Equation (10) is then another linear regression model with 

different intercept but with the same regression coefficient for x as in the two latent class 

regressions. Consequently, when the unobserved heterogeneity is not correlated with x, estimates of 

β  in the population are unbiased estimates of the slope parameters in the two (latent) classes. 
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This result does not carry over to the binary logit model. Similar to the previous case, consider a 

binary logit model in which the constant term differs by latent class 
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If class membership is unobserved, the observed probability1 that y=1 will be the average of the two 

y’s from each of the latent classes, with respect to the distribution of the two classes 
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with ( )
( )

1 2 1 2

1 23
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ln
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α
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( ) ( )ln lnt w
x

β
− −

=
−%  where t and w are described in 

Appendix A. When 1 2α α=  we get β β=% , see Appendix A. Otherwise, the slope parameters will 

not coincide. Furthermore, the slope of the “joint” model for both latent classes depends on the 

value of the independent variable x. As a consequence, no joint model exists in which the slope 

parameter is the same in the two latent classes and, furthermore, no model exists with a uniform 

slope parameter. These properties are illustrated in Figures 2a and 2b. 

 

FIGURE 2a and 2b HERE 

 

In Figure 2a the two dotted lines represent the predicted probabilities associated with a slope 

parameter for the independent variable of 1. The model with higher probabilities has a constant term 

of 2 whereas the model with the lower probability has a constant term of 0. We assume that the 

                                                 
1 In practice we do not observe the actual probabilities but rather binary 0/1 values of the dependent variable. However, 

since we are concerned with population level values and not individual estimates we use probabilities, i.e., expected 

values. 
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population is split with 50 percent of the observations in each model. This distribution yields 

probabilities for a joint model shown in the solid line. We show log-odds estimates rather than 

probabilities in Figure 2b because the effect of the independent variable is non-linear in 

probabilities. From Figure 2b we find that the slope of the parameter of the independent variable is 

constant in the two latent class models but that it varies with x in the joint model. Consequently, not 

only will the slope parameter β  be biased if unobserved heterogeneity is present in the binary logit 

model but there is also no single parameter to estimate. In practice, the empirical estimate of the 

slope parameter in the standard binary logit model is the average of the different slopes across the 

values of the independent variable and depends on the distribution of the independent variable. 

 

2.2 Identification 

The key challenge when estimating the FMBL model concerns identification of the unobserved 

heterogeneity component. In this section we show how variation in two dimensions of the data: 1) 

variation in the dependent and independent variables and 2) variation in the number of panels 

provide information that identifies the latent class parameters in the FMBL model.  

 

The log-likelihood equations for the FMBL model are  

 

 ( )( ) ( )ln 1
1

i
i i

i i i

Var y Var yL y y
P Pα

∂
= − −

∂ −∑ i                           (13.1) 
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1

i i i
i i

i i i

ix Var y x Var yL y y
P Pβ

∂
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∂ −∑                      (13.2) 
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     (13.3) 

( )0ln 1i i i
i i

i i i
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ε ε−∂
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,                         (13.4) 

 

where ( ) ( ) ( )0 0( ) 1 1 1i i i iVar y pP P p P Pε= − + − − iε )iε

i

 and . From the log-

likelihood equations we find that when

(( | ) 1i iVar y P PεεΞ = = −

00 iP Pεε = ⇔ = . This means that 

whenever 0ε = ⇒ 2
ln 0;L
p

δ∂
= ∀

∂
, i.e., when there is no information in the data on the value of p, 

the last Equation (13.4) becomes redundant and it is not possible to identify p. In practical terms 
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this situation entails that whenever ε  approaches 0, i.e., when there is no unobserved heterogeneity, 

the likelihood function may behave badly and the FMBL is not identified. 

 

We want to use the empirical variation in the Y and X variable to identify the unobserved 

heterogeneity, i.e., the latent class parameters. The amount of variation in Y and X determines 

whether or not it is possible to identify the latent classes. The posterior allocation of the latent 

classes Ξ conditional on Y and X is defined as 

 

( ) ( )

( ) { }
2

1

| , 1| , 1 1 exp( )11| , exp( ) 1 exp( )

j

j
j

P Y y X x p
P Y y X x p x
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ε α β ε

ε ε α β

=

=

= = Ξ =
Ξ = = = ≡ =

− + + +
+= = Ξ =

+ +∑
.     (14)        

 

Equation (14) shows that the allocation into different classes depends on observed values of y and x. 

Similarly to Equation (13.4), when 0ε =  then Equation (14) reduces to 1 p−  independently of the 

observed data. With cross-sectional data, observations on y = 1 renders the information on y = 0 

redundant (once we know y = 1 we also know that 0y ≠ ), and only variation in x can identify the 

latent classes. To show this formally we differentiate Equation (14) wrt. x and equate to 0 to obtain 

 

( ) ( )
[ ]{ } ( )( )0 2

| , exp( ) 1 exp( ) (1 )
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1 exp( ) 1 exp( ) 1 exp( ) 1

P Y y X x x y p p
x p y x x p

β

ε β α β ε ε

ε α β α β ε
≠

∂ Ξ = = = + + − −
= =

∂ − − + − − + + −

 

(15) 

  ⇒

 

0ε = ,                                                  (16) 

 

since the denominator is always defined. Equation (15) shows that whenever x varies so does also 

the posterior probability of observing a latent class membership (except when the latent class effect 

is 0). Consequently, individuals with different values of the independent variable x have different 

probabilities of belonging to the different latent classes and, in this way, variation in x leads to 

identification of the distribution of the latent classes. 
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With panel data, i.e., repeated observations of both Y and X, we have 1 2( 1) 1 ( 0P Y P Y )= ≠ − = , 

where subscript 1 and 2 indexes which wave of the panel the observation belongs to. Consequently, 

time-varying information on Y and X will lead to more information about the latent classes. The 

reason why can be seen from Equations (17.1)-(17.4) below where we show that variation in the 

dependent variable across panels leads to different posterior probabilities of being allocated to the 

different latent classes. If these allocation probabilities are identical across panels for varying Y, 

e.g., Y1 = 1 and Y2 = 0, variation in Y does not lead to identification of the allocation probabilities. 

Formally, the allocation probabilities into latent classes across panels can be written as 
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{ } { }

1 2| 1, | 0,
1 1 0

1 1 exp( ) 1 1 exp( )1 1
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Ξ = = = − Ξ = = =

= −
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+ +
+ + + + x

=           (17.1) 

 

  ⇒

 

{ } { }
1 exp( ) 1 exp( )

exp( ) 1 exp( ) 1 exp( )
x x

x x
α β ε α β ε

ε α β α β
+ + + + + +

=
+ + + +

                                                (17.2) 

  ⇒

 

{ } { }exp( ) 1 exp( ) 1 exp( )x xε α β α β+ + = + +                                                    (17.3) 

  ⇒

 

0ε =                                                                                                                  (17.4) 

 

Consequently, when y varies so does also the posterior probability of belonging to a latent class, 

except when the latent class membership effect is zero. If both X and Y vary across panels we have 

that 

 

( ) (1 2| 1, | 0, 'P Y X x P Y X xε εΞ = = = − Ξ = = = =) 0                                (18.1) 

 ⇔  
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1 exp( )0 or ln
1 exp( ')

x x
x

α βε ε
α β

⎛ ⎞+ +
= = − − −⎜ ⎟+ +⎝ ⎠

α β ,                                           (18.2) 

 

and, thus, identification ofε  improves when both Y and X vary. Finally, note 

that ; i.e., observations that only change values in 

x (and not in y) across time do not contribute to the identification of the latent classes. 

( ) (1 2| 1, | 1,P Y X x P Y X xε εΞ = = = = Ξ = = = )'

 

We may summarize these findings in the following proposition 

 

( ) ( )exp( )
1 exp( )If ( 1| , ) , ,  known, | , | ', ' ,x

xP Y x P Y y X x P Y y X xα β ε
α β εε α β ε ε+ +

+ + += = Ξ = = = = Ξ = = =
'  with ( ) 1 ( ')y y P Y y P Y y≠ = ≠ − = or x x' | , ', , ' 0. x x y yε≠ ⇒ =  

 

Proof: See Appendix B. The proposition states that if two different posterior probabilities are equal 

for different values of x (the case of cross-sectional data) or for y and or x (the case of panel data) 

the distribution of the latent classes is degenerate, at least for the observed data used in the 

comparison. Hence, data is non-informative with respect to the distribution of the latent classes. 

And vice versa: if the posterior probabilities differ for different observed (non-redundant) parts of 

the data this data is informative on the distribution of the latent classes. 

  

In summary, this section has shown that the finite mixture binary logit (FMBL) model is not 

identified when the effect of the latent classes is 0 or, in other words, when there is no unobserved 

heterogeneity. We have furthermore shown that variation in Y and X in cross-sectional and panel 

data leads to identification of the FMBL model. 

 

3. Simulation Study 

3.1 Simulation Results 

We run a series of simulations to analyze identification in the FMBL model. Our principal objective 

is to evaluate the performance of the FMBL with respect to reducing bias in the estimates of the 

regression coefficient β  of the continuous independent variable x relative to the standard binary 

logit model. We run 100 simulations with 500 observations, including repeated observations in 

panels. The simulations offer varying degrees of identification in terms of the number of panels and 
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variation in x, as defined by the number of values of x. The simulation parameters and the results 

from the simulation study are shown in Table 4. 

 

TABLE 4 HERE 

 

Table 4 shows that in a FMBL model with two latent classes, a continuous x variable (with an 

infinite number of values), and five panels estimates of the model parameters α , β , ε , and δ  are 

close to the true values and have small Root Mean Square Errors (RMSE). The table also shows 

that, in the case of only one panel (i.e., cross-sectional data) and two values of x, the FMBL model 

performs relatively poorly, but nevertheless estimates the regression coefficient β  with much less 

bias than the standard binary logit model in the sense that the estimate is closer to the true value. 

The intermediate cases show how bias and RMSE in the FMBL model increases model when we 

use shorter panels. It is also noteworthy that in all cross-sectional simulations the bias of the FMBL 

model remains at approximately the same level. 

 

3.1 The FMBL Model with Fixed Latent Class Weights 

The simulation with only one panel and two values of x shows that the FMBL model with two 

latent classes estimatesβ  more precisely than the standard binary logit model. Consequently, 

although the FMBL model is weakly identified it still outperforms the standard binary logit model 

in terms of the precision of the estimate of β . However, we may want to reduce the bias in the 

FMBL model further by reducing the number of parameters to be estimated. The latent class 

parameters are the worst identified parameters in the FMBL model. As a consequence, in empirical 

applications with cross-sectional data it may be difficult to obtain accurate estimates of the latent 

class parameters. As a means of improving identification of the FMBL model, we propose to fix the 

parameter for the weight of one of the latent classes (the transformed probabilities of the latent 

classes, 2δ , see Equation 8.1 and 8.2) to improve identification. By doing so, we impose the 

restriction on the unobserved part of the model that we know the proportion of observations that 

belong to one of the latent classes. This restriction leads to better identification of the FMBL model 

since it reduces the number of parameters to be estimated. In the next section we, first present the 

improvements in precision gained from fixing 2δ  and, second, we motivate why fixing the latent 

class weight is preferable to fixing other parameters in the model. 
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Table 4 also shows simulation results for the FMBL model with fixed latent class weights (we refer 

to this model as FMBLfw).2 Most importantly, in the weakly identified case with one panel and 

only two values of x the FMBLfw model exhibits considerably less bias in the estimate of β  than 

the standard binary logit model. Consequently, in applied research it may be preferable to estimate 

the FMBL model with a fixed latent class weight rather than to estimate the standard binary logit 

model. Not surprisingly, when we have multiple panels and values of x the FMBL model is less 

biased than the FMBLfw because the latent class parameters are well-identified and capture the 

unobserved heterogeneity in the data. An important question when estimating the FMBLfw model 

concerns how to find the optimal value for the fixed latent class weight 2δ . Rather than setting an 

arbitrary value one can use out a grid search to find the optimal weight parameter. For example, one 

could use grid values of 2δ  corresponding to the weights 0.05, 0.15, 0.25, …, 0.95 to find the value 

of 2δ  that maximizes the log-likelihood of the FMBLfw model. Even though one would need 10 

estimations of the FMBLfw model to carry out a grid search this approach is often faster than 

estimating one FMBL model.3 From our simulations we have found that the grid search in the 

FMBLfw model yields a model fit for the FMBLfw which is similar to that of the FMBL model. 

 

There are several reasons why it is preferable to fix the latent class weight rather than other 

parameters in the model. First, in the likelihood equations, Equation 13.1 to 13.4, we show that the 

equation for the latent class weight becomes redundant when the latent class effect approaches 0. 

Accordingly, for some values of the other parameters there is no information on how to choose a 

particular value of 2δ . Second, fixing the latent class weights does not have much substantive effect 

on the other parameters. To illustrate this point, we carry out a principal component analysis (PCA) 

of the estimates in the simulations shown in Table 4. The eigenvalues and eigenvectors of the 

estimated parameters in the simulations are shown in Table 5. 

 

                                                 
2 One might also pursue a profile likelihood approach (see Murphy and Van Der Vaart 2000) in which one iterates 

between maximizing the likelihood with fixed weights and fixing the remaining parameters while estimating the 

weights. We have used this approach in the simulations but it did not change any of our results. 
3 We have written GAUSS and R programs which implement this grid search routine in the FMBL and the FMBLfw 

models. These programs are available from the authors upon request. 
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TABLE 5 HERE 

 

The sum of the eigenvalues is proportional to the variability of the parameters in the different 

simulations. The greater the variability, the larger the total sum of the eigenvalues. Moreover, the 

size of each eigenvalue reflects the proportion of the variability in the estimates associated with this 

eigenvalue. The eigenvector or factor loadings associated with this eigenvalue indicates which 

parameters contribute to the overall variability associated with this eigenvalue.  By comparing the 

two top panels of Table 5, representing PCA of the simulations on panel data, with the three lower 

panels, representing PCA on cross-sectional data, we find that the sum of the eigenvalues are much 

lower in the simulations based on panel data than the eigenvalues in the simulations based on cross-

sectional data. This fact reflects the higher accuracy of panel data estimation compared to cross-

section estimation. 

 

The first and largest eigenvalue in all simulations corresponds to an eigenvector with high loadings 

on the constant term,α , and especially on the effect of the latent class, ε . Accordingly, a large part 

of the RMSE bias in these two parameters is due to the fact that they are correlated. The second-

largest eigenvalue, which is of considerable relative size in the cross-sectional simulations, pertains 

to an eigenvector with a high loading on the weight of the latent class, 2δ . This result suggests that 

a large part of the RMSE associated with this parameter is uncorrelated with the other parameters 

or, in other words, that in cross-sectional data 2δ  can take a wide range of values without affecting 

the other parameters in the model. Consequently, when identification is weak in an empirical 

application, it is possible to fix 2δ  without inducing much bias in the other model parameters, and 

especially inβ . 

 

FIGURE 3a + 3b HERE 

 

In the simulations in Table 4 we have used a fixed sample size of 500 observations. Obviously, by 

increasing our sample size we improve identification. To investigate how sensitive our simulation 

results are to sample size we have run a number of extra simulations with different sample sizes but 

kept the number of simulations for each sample size at 100. Figure 3a and 3b plot bias and RMSE 

in a panel model with one continuous x variable, five panels, and with increasing sample sizes. It is 

evident from the figures that both bias and RMSE decrease substantially with increasing sample 
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size both for the FMBL and the FMBLfw models. In no case, not even with small sample sizes, 

does the bias for the FMBL and the FMBLfw exceed that of the standard binary logit model. Hence, 

our results suggest that it is feasible to estimate the FMBL model when one has panel data and rich 

variation in the independent variables. However, from inspecting the RMSE it seems that with very 

small samples (less than 400 observations) the FMBL is rather unstable. In such cases the FMBLfw 

may be preferable since we do not induce much extra bias but obtain better precision compared to 

the FMBL model in which all parameters are estimated. The FMBLfw outperforms the standard 

binary logit model in every case both in terms of bias and RMSE. 

 

FIGURE 4a + 4b HERE 

 

The scenario is somewhat different in situations with cross-sectional data and limited variation in 

the independent variables. Figure 4a and 4b show bias and RMSE in a cross-sectional simulation 

with a single x variable with only two values. Here, it is evident that the FMBL model exhibits 

considerable bias and large RMSE. In fact, for small sample sizes the FMBL model exhibits as 

much bias as the standard binary logit model and a very large RMSE. For larger sample sizes the 

FMBL model still has a much larger RMSE than the standard binary logit model. These results 

suggest that the FMBL model does not perform very well in situations with cross-sectional data and 

limited variation in the independent variables. By contrast, the FMBLfw performs better in this 

situation and exhibits much less bias than the standard binary logit model for all sample sizes and 

also smaller RMSE, at least for sample sizes larger than 200 observations. This result suggests that 

that the FMBLfw might be useful when identification of the FMBL fails or is weak. 

 

4. Empirical Example – Public Support for Redistribution 

In this section we present an empirical illustration of the FMBL and FMBLfw models. We analyze 

data from the Canadian “Equality, Security, and Community” (ECS) survey, a two-wave panel 

survey conducted in 2000/2001 (wave 1) and 2002/2003 (wave 2) (see ECS Technical 

Documentation 1999; Jæger 2006). The ECS includes several subsamples, but we use the National 

Probability Sample which is representative of adult Canadians. The sample size is around 2,000. 

 

The ECS includes a wide range of binary attitudinal items. In this application we focus on an 

indicator of whether or not respondents support income redistribution. Public support for income 
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redistribution, and determinants of support for redistribution, has been studied extensively in 

political sociology (e.g., Edlund 1999; Brooks and Manza 2006; Kenworthy and McCall 2008). The 

respondents in the ECS were asked: “The government must do more to reduce the income gap 

between rich and poor Canadians”. Respondents answered this question by stating that they either 

agreed or did not agree with the statement. Table 6 shows that in both waves of the ECS the 

majority of respondents agree with the statement. 

 

TABLE 6 HERE 

 

We include a number of independent variables in the analysis. First, we include gross personal 

income in Canadian dollars, here coded into income deciles. Second, we include educational level. 

Educational level is measured in the ECS survey by ten ordered categories:  1 = “No schooling”, 2 

= “Some elementary schooling”, 3 = “Completed elementary school”, 4 = “Completed 

secondary/high school”, 5 = “Some technical, community college”, 6 = “Completed technical, 

community college”, 7 = “Some university”, 8 = “Bachelor’s Degree”, 9 = “Master’s Degree”, and 

10 = “Professional degree or doctorate”). Third, we control for the size of the residential are in 

which the respondent lives. The available categories are 1 = “small town”, 2 = “Census 

Agglomeration”, and 3 = “Census Metropolitan Area”. Fourth, we control for sector of employment 

with a dummy variable for being employed in the public sector. Finally, we control for gender (with 

a dummy variable for males) and age in years.  

 

We run three types of models. First, we estimate standard binary logit, FMBL, and FMBLfw 

models using only the first wave of the ECS data.4 Second, we estimate the same models using both 

waves of the ECS data. Using only the first wave of the data allows us to analyze how the different 

models behave when we use cross-sectional data. We then compare these results with the more 

accurate results from the models that use both waves. In the cross-sectional case we expect the 

standard logit model to be biased, the FMBL to be unstable, and the FMBLfw to be more reliable 

than both the standard binary logit and the FMBL models. 

 

TABLE 7 HERE 
                                                 
4 We used a grid search to find the optimal value for the fixed latent class weight in the FMBLfw model. The optimal 

value for the weight is the value that maximizes the log-likelihood of the FMBLfw model. 
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Table 7 shows the results from the different model specifications. From the table we see that both in 

the cross-sectional and panel data models the probability of supporting redistribution is negatively 

affected by higher income, education, urbanization (size of residential area), and being male. By 

contrast, public sector employment and age are positively related to support for redistribution. 

However, we also find that the estimated log-odds ratios vary considerably between the different 

model specifications and between the cross-sectional and panel data estimations. The FMBL model 

estimated on panel data is our benchmark model since this model uses the panel information in the 

data and controls for (well-identified) unobserved heterogeneity and, in doing so, produces the most 

trustworthy results. 

 

As expected, the standard binary logit model is unaffected by whether or not one uses cross-

sectional or panel data. In both cases the model greatly underestimates the log-odds ratios compared 

to the benchmark FMBL panel data model. The log-odds estimates from the FMBL model based on 

cross-sectional data are very similar to those in the standard logit model and, thus, are also severely 

biased. The estimated weight parameter in the FMBL model based on cross sectional data is also 

very large which indicates poor identification. Results from the FMBLfw model based on cross-

sectional data also suggest weak identification since the standard errors of most of the parameter 

estimates are larger than both those in the standard logit and FMBL models based on cross-sectional 

data. 

 

To evaluate the consistency of the three different cross-sectional models the last three columns in 

Table 7 report whether the estimated effects of the independent variables from these models differ 

significantly from those obtained from our benchmark model, the panel data FMBL model. Here, 

we find that only in the case of the cross-sectional FMBLfw model do all the estimated effects of 

the independent variables not differ significantly from the results obtained from the panel data 

FMBL model. In the standard binary logit and the FMBL models three out of six effects do not 

differ from those of the benchmark model. Consequently, although the FMBLfw model is 

somewhat imprecise when used with cross-sectional data, it yields much more trustworthy results 

than both the cross-sectional standard binary logit and FMBL models. 

 

5. Conclusions 

 19



Unobserved heterogeneity is particularly important in non-linear regression models. Unobserved 

heterogeneity leads to biased parameter estimates of the effect of independent variables on the 

outcome and to incorrect inference. Furthermore, unless one has rich panel data it may be difficult 

to deal effectively with bias from unobserved heterogeneity. 

 

This paper proposes a new approach to dealing with unobserved heterogeneity in the binary logit 

model which is useful in applied research. Our approach, which also generalizes to situations with 

other types of limited dependent variables, builds on the finite mixture framework which models the 

unobserved heterogeneity via latent classes that capture unobserved sub groups in the data. By 

modeling membership of these latent classes jointly with the probability of experiencing the binary 

outcome of interest, it is possible to reduce bias from unobserved heterogeneity. We argue that our 

Finite Mixture Binary Logit (FMBL) approach might be useful in applied research where it is 

difficult to identify the unobserved heterogeneity, for example when the researcher has only cross-

sectional data or short panels. We present simulation evidence which shows that the FMBL model 

is superior to the standard binary logit model in terms of reducing bias in the estimated effects of 

independent variables. Furthermore, we suggest that in situations where the FMBL model is poorly 

identified, for example in situations with cross-sectional data (or short panels) or with limited 

variability in the dependent and independent variables, it is useful to fix the parameter for the 

weight of one or more of the latent classes. Fixing the weight of one of the latent classes has little 

impact on the other parameters in the model but improves identification and precision, especially in 

comparison with the standard binary logit model. We also propose a grid search method to find the 

optimal value of the fixed latent class weight. Finally, we provide an empirical illustration of our 

new approach using Canadian panel data on public support for redistribution and show that our 

restricted FMBLfw model is superior to both the FMBL and the standard binary logit model when 

used with cross-sectional data. 

 

Our new approach contributes to the growing awareness about the impact of unobserved 

heterogeneity in applied research and the limitations of standard regression models. To address 

these issues the existing literature generally points to more complicated models. However, 

theoretical identification of these models is not always clear, and their implementation in practice is 

often cumbersome. This paper shows how a particular class of models, a binary logit model that 

allows for unobserved heterogeneity, can be identified from different sources of variation in the 
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data. Although our FMBL model is theoretically identified it may be difficult to estimate with 

cross-sectional data or short panels. To remedy this problem we suggest simplifying the FMBL 

model by fixing one of the latent class weights. This simplification makes the model easier to 

estimate but does not have any substantive impact on the precision of the estimated effects of the 

independent variable on the binary outcome. The simplified approach might then be useful for 

applied researchers for whom the main objective is to obtain unbiased estimates of the effects of 

independent variables. 
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Appendix A: The function f(.) in Equation 12. 
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Table 1. Stylized Data. 
 Y = 1 Y = 0 
X = 0 52 148 
X = 1 100 100 
X = 2 148 52 
X = 3 188 12 
 
 
Table 2. Stylized Data Stratified by Sub Group 
 Group 1 Group 2 
 Y = 1 Y = 0 Y = 1 Y = 0 
X = 0 50 50 2 98 
X = 1 88 12 12 88 
X = 2 98 2 50 50 
X = 3 100 0 88 12 
 
Table 3. Parameter Estimates from the Binary Logit and FMBL models 

α ε  ( )P εΞ =βModel  Log-
Likelihood 

Binary logit, no x 0.447 - - - - 53499.84 
Binary logit with x -1.135 1.175 - - - 41479.12 
FMBL, two latent classes 0.013 2.026 -4.078 0.500 - 41324.56 
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Table 4. Simulation Results. Bias and RMSE 
 

 
Standard Binary

logit 
 FMBL,  

two latent classes 
FMBLfw 

 

Setup 
 

True 
value 

Bias      RMSE Bias RMSE Bias RMSE

α =-0.3 -0.636 1.962 0.028 0.011 0.238 0.282
β =0.4 -0.278 0.318 -0.003 0.013 -0.075 0.033
ε =0.5 - - 0.101 0.005 -0.057 0.005

Five 
Panels, 

Values of 
x: ∞ 2δ =-0.15 - - 0.060 0.021 - -

α =-0.3 -0.631 1.928 0.071 0.062 0.441 1.005
β =0.4 -0.260 0.275 0.013 0.018 -0.073 0.032
ε =0.5 - - -0.117 0.039 -2.443 0.196

Two 
Panels, 

Values of 
x: 2 2δ =-0.15 - - 0.036 0.020 - -

α =-0.3 -0.632 1.942 1.221 17.681 1.489 18.663
β =0.4 -0.263 0.289 0.153 3.186 0.052 0.140
ε =0.5 - - -13.029 15.071 -17.802 15.333

One Panel,
Values of 

x: 2 2δ =-0.15 - - -1.556 27.658 - -
α =-0.3 -0.634 1.959 1.049 13.098 0.403 8.486
β =0.4 -0.274 0.328 0.092 1.449 -0.141 0.192
ε =0.5 - - -11.077 10.914 -0.773 8.352

One Panel,
Values of 

x: 4 2δ =-0.15 - - -1.242 19.597 - -
α =-0.3 -0.633 1.955 1.289 18.455 0.684 11.302
β =0.4 -0.277 0.347 0.112 1.903 -0.117 0.199
ε =0.5 - - -14.187 4.913 -4.947 10.221

One Panel,
Values of 

x: ∞ 2δ =-0.15 - - -1.327 24.266 - -
Note: 2δ  fixed to 0. Number of observations = 500. Bias is the average deviation between the estimated values of the parameters and the 
true values. 
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Table 5. Principal Component Analysis of Simulation Results. 
 PC1 PC3PC2 PC4  
Five panels, two values of x 

 Eigenvalues 1.386 0.112 0.075 0.035
α  0.448 -0.417 0.257 -0.748
β  0.001 0.164 -0.901 -0.401
ε   -0.892 -0.155 0.148 -0.398

2δ  -0.055 -0.881 -0.316 0.350
Two panels, two values of x 

 Eigenvalues 1.683 0.422 0.145 0.078
α  0.471 -0.461 0.421 -0.623
β  -0.012 0.045 -0.808 -0.588
ε   -0.879 -0.183 0.260 -0.354

2δ  -0.066 -0.867 -0.320 0.375
One panel, two values of x 

 Eigenvalues 5.481 4.146 1.530 1.018
α  0.383 -0.328 0.852 -0.143
β  0.017 0.036 -0.159 -0.987
ε   -0.915 -0.262 0.298 -0.073

2δ  0.126 -0.907 -0.401 0.034
One panel, two values of x 

 Eigenvalues 5.448 3.801 1.866 1.233
α  0.408 -0.241 0.620 0.625
β  -0.025 0.030 -0.696 0.717
ε   -0.902 -0.256 0.260 0.232

2δ  0.141 -0.936 -0.253 -0.202
One panel, two values of x 

 Eigenvalues 6.182 4.559 2.146 1.282
α  0.365 -0.254 0.807 0.388
β  -0.097 0.069 -0.376 0.919
ε   -0.926 -0.113 0.356 0.056

2δ  0.005 -0.958 -0.283 -0.043
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Table 6. Summary Statistics for Variables in ECS Survey 
 Year 2000/2001 2002/2003 

Dependent variable: Mean SD Mean SD
Q: “The government must do more to reduce 
the income gap between rich and poor 
Canadians …” (percent in agreement) 

0.804 0.396 0.753 0.431

 
Income (deciles) 5.771 2.526 5.807 2.633
Educational level (ten groups) 5.520 2.094 5.626 2.104
Size of residential areaa 2.220 0.903 2.220 0.903
Public sector employee 0.304 0.460 0.223 0.416
Gender (= male)a 0.427 0.495 0.427 0.495
Agea 45.944 15.756 45.944 15.756

Note: a variable appears only in 2000/2001 survey. 
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Table 7. Results from Different Specifications of the Model for Support for Redistribution. Log-Odds Estimates with Standard Errors in 
Parenthesis 
 Cross-sectional (wave 1) Panel (waves 1 and 2) Estimates from cross-sectional 

models within 95 percent CI of the 
two panel FMBL model 

      

     

Binary
Logit 

 FMBL FMBL
fw 

Binary 
Logit 

FMBL FMBL
fw 

Binary 
Logit 

FMBL FMBL
Fw 

Constant 2.349
(0.299) 

2.408 
(1.488) 

0.060 
(0.523) 

2.464 
(0.216) 

1.062 
(0.544) 

1.239 
(0.451) 

- - -

Income/10     

   

   

   

   

     

-1.188
(0.237) 

-0.882 
(0.254) 

-6.102 
(2.280) 

-1.315 
(0.176) 

-1.949 
(0.328) 

-1.947 
(0.328) 

No No Yes

Educational 
level/10 

-0.469 
(0.294) 

-0.614 
(0.314) 

-1.394 
(1.154) 

-0.679 
(0.215) 

-1.351 
(0.445) 

-1.416 
(0.438) 

No No Yes

Size of 
residential 
area 

-0.170 
(0.066) 

-0.148 
(0.071) 

-0.644 
(0.367) 

-0.146 
(0.048) 

-0.266 
(0.107) 

-0.253 
(0.102) 

Yes Yes Yes

Public sector 
employee  

0.399 
(0.142) 

0.100 
(0.147) 

0.479 
(0.473) 

0.378 
(0.098) 

0.731 
(0.172) 

0.709 
(0.175) 

No No Yes

Gender  
( = male) 

-0.246 
(0.116) 

-0.210 
(0.125) 

-0.946 
(0.556) 

-0.199 
(0.086) 

-0.385 
(0.190) 

-0.391 
(0.193) 

Yes Yes Yes

Age/100 0.500
(0.379) 

0.625 
(0.416) 

2.955 
(1.501) 

0.528 
(0.280) 

0.771 
(0.624) 

0.671 
(0.600) 

Yes Yes Yes

ε  -       0.115
(3.620) 

9.233 
(2.167) 

- 3.996
(0.172) 

3.987 
(0.174) 

- - -

δ  -         

          
    

0.214
(21.517) 

- - -1.195
(0.147) 

- - - -

BIC
Log-
Likelihood 

-999.67 -902.94 -898.13 1901.91 -1725.38 -1725.60

Note: Number of observations = 2,112. 
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Figure 1. Observed and predicted probabilities for Y = 1. 
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Figure 2a. Probabilities for to logit models with equal slope and mixed probabilities. 
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Figure 2b Log-odds for to logit models with equal slope and mixed probabilities. 
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Fig. 3a. Bias in Estimates of β , Panel Data Simulations  
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Fig. 3b. RMSE in Estimates of β , Panel Data Simulations 
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Fig. 4a. Bias in Estimates of β , Cross-Sectional Simulations          
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Figure 4b. RMSE in Estimates of β , Cross-Sectional Simulations 
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	Table 4. Simulation Results. Bias and RMSE

