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SUMMARY: An uncertain and not just risky situation may be modeled using so-called
belief functions assigning lower probabilities to events, that is, to sets of possible
outcomes. In this paper we give an introduction to this concept and a first contribution
to modeling decision making when there is uncertainty. We extend the von Neumann-
Morgenstern expected utility theory to belief functions.

1. Introduction

An economic decision is a choice among a set of possible afternatives. In some ca-
ses the alternatives may be equal to the final outcomes, but very often the final out-
come also depends upon some state of nature which may be unknown when the decisi-
on is made. For example, a decision maker considers which share to buy in the stock
market. The final outcome is what is earned on the transaction (in e.g. DKK), but this
may depend upon future oil prices, on who will be the future manager of the firm, and
other matters not known when the share is to be bought. Each decision can thus be
viewed as a mapping assigning to each state of nature a particular outcome.

[n the von Neumann-Morgenstern (1947) expected utility theory, the decision maker
holds an exogenous probability distribution over the states of nature, and thereby, for
each possible decision, a probability distribution over the final outcomes (a lottery). It
is assumed that the individual has a preference relation ordering all lotteries, and that
this preference relation fulfills some basic and appealing postulates — axioms. Then it
is shown that the preference relation can be represented by a utility function fulfilling
the expected utility hypothesis, i.e., the utility of any lottery is the expectation of the
utilities of the final outcomes with respect to the probabilities.

In the von Neumann-Morgenstern theory the probabilities over states are exoge-
nous'. However, in real life decision situations the present evidence consists of certain
statements known to be true and from these the decision maker must make up what he

This paper reports part of the material in Hendon, Jacobsen, Sloth, and Tranxs (1991). We are very grate-
ful to David Schmeidler for help and encouragement. Financial support from the Danish Social Sciences
Research Council and Economic Department, Tel Aviv University is gratefully acknowledged.

1. This is whar distinguishes it from the contributions of Savage {1954) and Anscombe-Aumann (1963),
which are concerned with deriving subjective probabilitics over states from preferences over decisions,
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believes about the plausibility of different states. Sometimes he is naturally led to a
probability distribution over states, e.g. the roulette, but in other cases the information
is not sufficiently rich for this. For instance, let there be three possible future managers
r, s and ¢ of the firm. No evidence speaks for any particular of them. It is known that »
and s, but not ¢, graduated from the Harvard Business School. The majority of share-
holders have confidence in candidates from Harvard, etc. In this and many other situa-
tions of economic interest, it seems highly unlikely that the decision maker, from the
present evidence, should formulate his beliefs as precise as a probability distribution
over states. To phrase it in classic terms: Uncertainty may be of a more fundamental
nature than risk, that is, than what is captured by a probability distribution, as advo-
cated by Knight and Keynes.

A prominent example is the so-called Ellsberg paradox, Ellsberg (1961). The objec-
tive, present evidence is this: There is an urn containing 150 balls; 50 of these are red,
and 100 are either black or green; there is no further information. Individuals are first
asked to choose between two bets, A and B, governed by a random draw of one ball. A:
DKK 100 are won if the ball is red. B: DKK 100 are won if the ball is black. They are
then given two other bets. C: DKK 100 if the ball is red or green. D: DKK 100 if the
ball is black or green. A non-negligible proportion of decision makers strictly prefers A
to B, and D to C. Assuming that bet / is strictly preferred to bet // if and only if bet /
gives DKK 100 with strictly higher probability than bet /7, these preferences are incon-
sistent with any additive probability over colors.

Generally, it seems relevant to consider decision environments, where an individual
views each possible decision as giving rise to a mapping from states to outcomes but
where the individual’s assessment of which state will occur is uncertain in a fundamen-
tal way that cannot be captured by a probability distribution over the states, and where
the consequence of each possible decision is therefore something more fundamentally
uncertain than a probability distribution over outcomes. As the objects capturing this
more basic uncertainty, we use a generalization of probability distributions namely be-
lief functions, Shafer (1976}, or lower probability fimctions, Dempster (1967). Belief
functions are formally introduced and interpreted in Section 2 below.

The primitives of the theory presented here are the set of belief functions over a fi-
nite sct of outcomes and a preference relation on this set. The task will be to derive a
utility representation of this preference relation from axioms on it, thereby obtaining
some first insight in the way decision makers may deal with uncertainty. Our theory is
von Neumann-Morgenstern-like in the sense that the belief functions over states
(outcomes) are exogenous. There is also a literature concerned with deriving subjective,
non-additive probabilities over states, Schmeidler (1989), Gilboa (1987) and Wakker
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(1986)2. However, the contribution closest to the present one is the work of Jaffray
(1989).

The axioms we use here are as standard as possible in order not to confuse things.
In fact, we are going to use the von Neumann-Morgenstern axioms and then add one
which is supposed to be weak. The present paper is thus a first step in representing
preferences over belief functions.

2. Belief functions and the problem considered

Consider a finite set of outcomes; X = (x,,..., x, ), and denote by y the set of all
subsets of X, An element E of y is referred to as an event.

A probability measure  assigns to each event £ a number w(E), the probability of
E. A probability measure is thus a function 7: y— [0,1], fulfilling:

m(@) =0 and w(X) =1, (n
m(EUF) = w(E) + w(F) — w{ENF), for any two events £ and F (2)

Property (2) is called additivity. The set of probability measures on X is denoted V.
For convenience, write ar(x) for m({x}} for all x € X. From (2), m(E) = X .er 7(X)
for any E.

A belief function v: y = [0, 1], is a generalization of a probability measure obtained
by weakening (2). The interpretation of a belief function is that it assigns to each event
E, a lower bound wE), on the likelihood of E, see also Shafer (1976). The weight of the
evidence in support of E, is wE), while the plausibility of E is |-W(E), where E is the
complement of £. So, a belief function embodies in this interpretation both a lower and
a upper bound on the likelihood of each event, and in this sense it may contain uncer-
tainty additional to risk: It assigns to each event not just a single number, the probabili-
ty of that event, but an interval, the range of possible probabilities of the event.

As an example consider again the share/manager example of the introduction and
assume that our decision maker, to the three possible states #, 5, and ¢, associates the
three rates of return x|, x;, and x; respectively. The fact that he has little faith in any
particular of the potential future managers, but high faith in it being either r or s could,
for instance, be expressed by the following belief function over outcomes: vw&) = 0,
ufed) = wah = vifeh) = 0.1, vife, xih) = ol x3h) = 0.2, v(fe,, 1) = 0.8
ufxy, X2, X3} = L.

Which properties should be attributed to a belief function v? One suggestion is that
for any two events £ and F, w(EUF) = wE) + vF) - v(ENF). The idea, which we

2, Alternative approaches are Gilboa and Schmeidler {1989) and Vind (1991).
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will soon make precise, is that going to larger sets can only increase certainty. In the
same spirit it could then be suggested that for any three events E, F and G, we should
have v(EUFUG) = wE) + vfF) + v(G) — w(ENF) - v(ENG) - vfFNG) +
wENFNG), ete. In Schafer (1976), the following restriction, which is a generaliza-
tion of the above for two and three events to & events, is introduced as the defining pro-
perty of a belief function:

uwE, U... UE )= ¥ [l v(NE,), forany kevents E,,..., E;. (3)
1c{l,....k} ief

This property is called &~-monotonicity. To understand the content of k-monotonicity
note that (3) with equality is the usual inclusion-exclusion rule for probability measu-
res which jollows from (2) by induction. As already noted, a similar implication does
not hold for inequalities. The condition of k-monotonicity must therefore be imposed
in order to have an analog to the usual inclusion-exclusion rule.

We require k-monotonicity for all £, i.e., v: y — [0,1] is a belief function if it sati-
fies (1), and (3) for any k& = 2. Denote by ¥'# the set of all belief functions. Since pro-
bability measures are k-monotone for all &, we have ¥ C V2. One can simply think of
a belief function v as the vector (WE))ge, in R, m:= #X. For any two belief func-
tions vy, v, € ¥, and a €[0,1], the convex combination v = av, + (1-a)v, is defi-
ned by: WE) = av (E) + (1-a)u,(E), for all EE x. It is easy to verify that ¥ and Ve
are convex sets.

We have not yet justified the assumption of A&-monotonicity for all k& = 2. However,
one very natural way to think of an uncertain environment is as given by a so-called
massfunction, as in Shafer (1976). A function m : y — [0,1], is a mass function if
m{}) =0, and EEEX m (E) = |. The interpretation is that for any event £, m(E) is the
weight of evidence in support of £ which is additional to the weight already assigned
to the proper subsets of £, The fact that m has non-negative values captures the idea
that going to larger events can only increase certainty. Think of each possible decision
as giving rise to a particular mass function m. The belief in an event F is naturally defi-
ned as: wF): = EE‘.‘EQF m(E). Shafer (1976) shows that if v is defined from a mass
function in this way, then v is a belief function, and conversely, any belief function is
given by a uniquely determined mass function.

Returning to the share/manager problem we see that vcan be derived from the mass
function m, where m({x\}) = m({x,}) = m(f;}) = mf{x;, x5, 53}) = 0.1, m (fx;,x,})
= 0.6, and m({x;,x3}) = m({xs, x3}) = 0. So most of the evidence weighs in favor of
{x|, x,} reflecting that the “Harvard argument™ points to this set.

A particular class of belief functions is the unit belief functions. For any E €X,
E#8, define v by: ve(F) = 1 if E CF and vg(F) = 0 otherwise. This says that the
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outcome will be an element in £ for sure, and nothing else. Then v, is indeed a belief
function: Its mass function is simply m(F) = 0 forall F # E, and m(E) = 1.

Let m, be the unique mass function defining v. Then for any £ wF) = X, .-m, (E)
=3 £ exyay m(E)u (F), so vis a convex combination of the unit belief functions:

= ¥ myE)us (4)

£epa)

The primitive of our theory is (V%, > ), the set of belief functions over X with a pre-
ference relation > on it, where > should be read “is at least as good as™.> The problem
is, from certain axioms on >, to find a representation; a function U : ¥— R, such
that for all v,w€ V*:v >w & Uy = U(w), where U has an intuitive interpretation.

From >, define > by: v > wif v > w but not w > v, and define ~by: v~w
if v > wand w > v Given (¥ >) there will also be given preferences over the pro-
bability measures in ¥, in particular over the lotteries assigning probability 1 to one
outcome, and zero to all other outcomes. We write x; > x; if the lottery giving x, for
sure 1s at least as good as the lottery giving x, for sure. Without loss of generality we
assume thatx; > x, > ... > x,.

A simple version of the so-called Mixture Set Theorem, Herstein and Milnor
(1953), will be of great use. Let M be a convex subset of Rf, k € N, and let > be a
relation on M, Define > and ~ from >=as above.

Al. {Weak order). > on M is complete and transitive.

A2. (Independence). For all my, ms, my € M, and a« € ]0,1]): If m, > m,, then

am, + (1-a)my > am, + (1-o)m;.
A3. (Continuity). For all m,, m;, my € M, such that m; > m, > m; there are «,
BE[0,1], such that: am,, +{l—a}m; > my > Bm, +(1-B)m,.

MIXTURE SET THEOREM, MST. The following two statements are equivalent:

(i) (M=) filfills A1 — A3.

(if) There is an affine function U: M — R*, such that U represents = Further, if U’
is another affine representation of >, then U'= aU+b, for some a, b ER a > (.

Applying the MST to (V*, >) yields the von Neumann-Morgenstern theory of ex-
pected utility: From affinity of U, one gets that for any 7 € V4, Ugm) = U(X., 7, e,

3. Let a decision be a function £ § — X, from a finite set of states 1o X, Further, let uncertainty with
respect Lo states be deseribed by the belief function 5 % — [0.1]. where s the set of subsets of S, Deri-
ve w y = [(L1] in the natural way: wE) = nf,f"‘rEJJ' for all £ € y. Then vis a belief function on X, This
Justifies that we start right off with belief functions on X

4. The function U is affine if Utenny + ¢1-odmis ) = allimy )08 o) Utens ). foralf my, ms EM o €
[ 1],
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= E:—L; 7; Ufe; ), where e; is the i"th unit vector, that is the lottery giving x; for sure,
Defining u(x; ) := Ufe; ), we have: Ufm) = E-*E.r u(x)(x). The utility assigned to a
lottery 4, is the expected value, with respect to 7, of the utilities assigned to the sure
outcomes.

The core®, C(v), of a belief function v is the set of probability measures which do
not contradict v:

Cy :={m VI n(E) = wE) forall E € y}. (5)

From Shapley (1971), for any 2-monotone v, C(u) is non-empty. So, any belief func-
tion has a non-empty core, and the core of a probability measure i is {7}.

A function p from {1, ... n} onto X| gives a particular sequence of the cutcomes; pfi)
is the outcome on place i, p~' (x) is the place given to x. The set of all n! permutations is
P. For any vin V%, and any p in 2 we define the probability measure 7 by:

pv

5, . (p(1)) == v({p(1)}). and (6)
i i-1
3, (p(0)) = WU () = WU {p(i)}) for i € {2.....n}.

To illustrate consider the simple permutation p'(i) = x;. Then 7,  is the probability
measure constructed from v by first giving to x,, the best outcome, the least probability
that can be given according to v The second best outcome x, is then given the least
probability it can be given according to vand what has already been given to x;, etc.

Shapley (1971) shows that for all 2-monotone v, the set of all vertices (corners) of
C(v is {ﬂ';_u € V' p € P}, and Cfu) is the convex hull of this set.

An example will clarify these concepts. Consider again the belief function of the
share/manager example. Its core is illustrated in Figure 1. The triangle represents the
set of all probability distributions over {x,, xs, x3 }, with m(x, } measured along the
m(x, )-axis and so forth. From v{x,}) = 0.1, we obtain from (5) the restriction
m(xy) = 0.1. From v({x,, x;}) = 0.8, 7(x,) + 7(x; )= 0.8, and hence m(x;)=
0.2. Continuing like this the core of v appears as the shaded area. The points 7 are

py

casily computed. For instance, for p = (x,, x3, x, J, it follows from (6), that s, (X2 )

= 0.1, then 7; (x3) =02 -0.1=0.1, and finally 7, (x,}) =1-02=08,s50 7 =
(0.8,0.1,0.1), which is one of the vertices of the core. For this particular v, there are dif-
ferent permutations giving rise to the same g With three outcomes, the core may

have up to six vertices.

5. The core is a concept from cooperative game theory. Those familiar with this branch will realize that a
belief function v y — [0,1], has exactly the structure of a characreristic funetion of a game with side pay-
ment, where X would then be the set of players, and y the set of coalitions.
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Figure 1. The core in the share/manager example

3. Representation theorems: The nature of (V'5, >)

The set of belief functions is convex, so assuming Al1-A3 for (¥% > would, directly
from the MST, imply the existence of an affine representing function U/ : ¥# — R (and
vice versa). Using (4) and affinity, U can be written: Uty) = U( Zeeppor M, (E) ve) =
Y pevior Mu(E)Ufug ). This observation is parallel to the von Neumann-Morgenstern
representation for probability measures, where now Uy, ) is the counterpart of u(x). In
so far as one has good intuition for Ufu ) — like one has in the von Neumann-Mor-
genstern theory for ufx) — we have now an interesting representation. However, we do
not think that the utility of ending in set £ for sure but knowing nothing else, is as
interpretable as the utility of getting outcome x for sure. Further, assuming A1-A3 for
(V¥ >) implics assuming them for (¥4, >), so preferences over lotteries can still be
represented using a von Neumann-Morgenstern utility on X. We would like to have the
utility function U on ¥'# expressed in terms of w. To obtain this we must add an axio-

me:*

0. Jaffray (19893 also builds on the above observation. It is when it comes to “the additional axiom™ that
the present paper differs from that of Jattray.
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Ad, (Non-extreme attitude towards uncertainty). For any £ € y\{@}, there are
7, g € VA, suchthat e (E) = 7z (E) = 1, and g > vp = 7.

We consider A4 to be very weak. First note that A4 is an axiom ondy on the unit be-
lief functions. A unit belief function vg, contains the information that the outcome will
be in £ for sure and nothing else. The set of probability measures giving something in
E for sure is {m € V"' | @w(E) =% ,cg m(x) = 1}, which is exactly C(vg). The ele-
ments of this set are ranked by =. The content of A4 is just that vy itself is no better
than the very best element and no worse than the very worst element of this set. In
particular, since A4 is made only on unit belief functions, 7z and#; may be the worst
and the best pure outcome of £ that is, we could have 7, 7y € E, and 7 >x >7¢
forallx €E.

Theorem | below is a rather easy consequence of the MST and A4. For formal
proofs the reader is referred to Hendon, Jacobsen, Sloth, and Tran®s (1991).

THEOREM 1. Let (V2. =) be given. The following two statements are equivalent:

(i) (V5 =) fulfills A1-A4.

(it} There is a functionu: X = R, and for eachv € VE thereisa probability mea-
sure m, € Cfy), where w considered as a function from V9 to V4 is affine, such
that U: V% = R, defined by Ufv) := X ey ufx) T (x) represents =. Further, the
Sfunction u is unigque up to a positive affine transformation.

Theorem | is a qualitative statement on the nature of (V' %, >). Given 41-44, preferen-
ces over the complicated objects, belief functions, are as if each belief function is iden-
tified with a lottery in its core, from which the expected von Neumann-Morgenstern
utility in the usual sense is computed, and the so defined numbers rank all the belief
functions in preference. Conversely, if the preference has such a representation, Al-A4
are fulfilled. However, Theorem | says little about which element of Cru), v is identi-
fied with. We only know that the function 7 from ¥* to V" is affine, and thereby con-
tinuous, in v 1t is, of course, warranted to say more about the variation of r, with v
Since Theorem 1 is an if-and-only-if-theorem, we know that this will require stronger
axioms. We introduce now an axiom of concistency which is stronger than A4,

Consider the belief function vy which contains absolutely no information: It says
that the outcome will be in X and nothing else. Assume that A1-A2 are fulfilled. Then
there is some subset [y C V', such that vy ~ w for all ™ € Iy. A natural consistency
requirement will now be that there is some wy € 1y, with myfx) > 0 for all x, such that
for each subset £, vy ~ m € V1, where 7, is derived from m, by Bayes’ rule, i.e.,
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.l'l

Figure 2.

T (x) = Wyfx)/my (E) for x € E.7 This is a requirement of internal consistency of the
decision maker’s preference over unit belief functions. As the appropriate consistency
concept we use Bayes' rule which is possible since the requirement is only concerned
with unit belief functions. Note that Bayes” rule is not used for updating the uncertain
objects, the belief functions; ist is only used as a way of expressing consistency of pre-
ferences.

AS5. (Consistency). There is , € ¥ with myx)= 0 for all x € X, such that vy ~y,
and for each £ € y\M@}, ve ~— 7, where 7 is given by mg(x) 1= my (x)/m(E), for all x
€E, and mefx) =0forx € E.

It is obvious that AS is a special case of A4: Just use the 7z of A5 as both 7, and 7,
in A4. To prove Theorem 2 below, basically what is needed is Theorem | above and a
result from cooperative game theory on Shapley values (see e.g. Kalai and Samet
(1988)).

7. The assumption #5 restrictive, and is made for simplicity. Axiom AS and Theorem 2 can be gencralised
to allow for myfx) = 0 for some x by using the notion of a weight system, see Hendon, Jacobsen, Sloth,
and Tranas (1991).
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THEOREM 2. Let (V2, >) be given. The following two statements are equivalent:

(i) (V8 >) fulfills A1-A3 and AS.

(i) There is a function u: X = R, and there is w € VA, where m(x) > 0 for all x €
X, such that if for each p € P;

@, .-=£[ w(p(j)) fé?l m(pk) 1,
the function: U: V® — R defined by Ufv) := Z,ex u(x) [ Tpep o, ] (x) repre-

sents . Further, the function u is unique up to positive affine transformation.

Note that for the a,'s of (ii), o, €[0,1] for allp € P,and ¥, cpar, = 1. So, Theorem
2 gives a high degree of regularity in the choice of m, from Theorem 1. A person fulfil-
ling A1-A3 and AS (and thereby A4) behaves as if he assigns to each belief function v
a number, which is the expected von Neumann-Mergenstern utility of a 7, in the core
of v, where 7, is computed as a weighted average of all the vertices ;, , of the core of
v, and the weights «, are independent of v. The regularity comes from the last part: The
weighted avarage used is the same for all belief functions.

As an illustration consider Figure 2, where the cores of two different belief functions
v and w have been drawn, fully and dotted, respectively. The vertices of the two cores
are connected two by two by arrows. Connected vertices are given the same weights in
the computations of 4, and 7. The lower, right vertex of Cfw) is given weight equal
to the sum of the weights of the two lower, right vertices of Cyu). If, for instance, ,, is
situated close to the vertex arising from the requirements given by v({x,}) and
vf{x,,x;}) then 7, is also close to the corresponding vertex.

With a representation like that of Theorem 2 the Ellsberg paradox need no longer be
a paradox. From the objective evidence, the belief function over colors (states) would
naturally be: nffred}) = 1/3, ni{black}) = ni{green}) = 0, ni{fred, black}) =
n(fred, green}) = /3, n({black, green}) = 2/3. The derived belief functions over
outcomes are then for cach alternative: 4: v*(100) = 1/3, v*(0) = 2/3; B: v"(100) = 0,
V(0) = 173; C: v(100) = 173, v(0) = 0; D: v¥(100) = 2/3, v(0) = 1/3. The cores of
these can be expressed in terms of the probability of winning DKK 100: Cuv“) =
{173}, Crv®) = {m 1 7w = 2/3}, Cv*) = {7 | = = 173}, Cv') = {2/3}. To cach core
the decision maker associates a specific probability measure. Within the axioms of
Theorem 2, this could very well be close to the minimal possible probability of win-
ning DKK 100 (this corresponds to choosing a,,., where p' = (0,100), close to 1, which
is obtained by letting 7y (0) being close to 1 and y (100) close to zero), i.e., close to
Tpu = 13, T =0, 7, = /3, 7 ,=2/3. Assuming that u(100) > u(0), calculation
of expected utility with respect to these probabilities gives 4 > Band D > C.
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