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Abstract

This paper analyses admission decisions when students from di¤er-
ent high school tracks apply for admission to university programmes.
I derive a criterion that is optimal in the sense that it maximizes the
graduation rates of the university programmes. The paper contains
an empirical analysis that documents the relevance of theory and il-
lustrates how to apply optimal admission procedures. Indirect gains
from optimal admission procedures include the potential for increas-
ing entire cohorts of students�probability of graduating with a higher
education degree, thereby increasing the skill level of the work force.
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1 Introduction

High graduation rates and the smooth transition of students through the
higher educational system are important elements for attaining a high skill
level of the work force. Admission policies to higher education constitute a
crucial factor for the allocation of students to di¤erent programmes and insti-
tutions, for graduation rates, and for incentives in the secondary educational
system.
University admission policies are under debate in many countries. For

instance, the British debate includes the lack of applicants to university pro-
grammes that require a strong background in mathematics and science, be-
cause upper-secondary school �students choose �easier�subjects to get higher
grades�(Sunday Times, August 17, 2003, p. 6). One virtue of the admission
system that this paper proposes is that it can remove the inconsistency be-
tween the rational choices of upper-secondary school students and the aim
of the education system of providing students with a good background for
obtaining a university degree.
This paper analyses the following issue. Students in upper-secondary

school (also denoted �high school�) choose di¤erent types of high school cur-
ricula (hereafter �tracks�). These tracks vary with respect to, for example, the
amount of mathematics. After high school the students apply to a higher ed-
ucational institution (hereafter �college�or �university�) or a programme at a
university. If the Grade Point Average (GPA) from high school is su¢ ciently
high, the student is admitted, if not, the student is not admitted. Amongst
the admitted students, some graduate from the university programme whilst
others do not. The probability of graduating from the programme may de-
pend on the student�s choice of track in high school (e.g. students with a
strong background in mathematics may more successfully complete certain
university programmes than students with less mathematics).
This paper �rst analyses admission criteria to a programme to which stu-

dents from di¤erent high school tracks apply. The analysis is carried out
under the following assumptions. (1) The University bases the admission
criteria on the GPA and the student�s high school tracks. (2) The prob-
ability that a student graduates from the programme increases with GPA
and varies between students from di¤erent high school tracks. (3) The num-
ber of admitted students to the programme is �xed. (4) The goal of the
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university is to maximize the number of students that graduate from the
programme. These assumptions imply that the university will set admission
GPA thresholds for each high school track (i.e. students with GPAs above
the threshold are admitted, whereas those with GPAs below are not). I prove
that the maximum graduation rate is obtained when admission thresholds
are set such that the marginal graduation rates of students from the various
high school tracks are equal. If the marginal graduation rates are not equal,
the university can decrease the number of students from a high school track
with a low graduation probability and increase the number of students from
a track with a high graduation probability, which implies that the average
graduation rate increases. The admission rule is optimal in the sense that it
maximizes graduation rates.
The paper contains an empirical analysis that documents the relevance

of theory and illustrates the application of the rules for optimal admission.
I estimate graduation probabilities non-parametrically as a function of GPA
for students from three high school tracks entering four social science pro-
grammes at the University of Copenhagen. The data contain information
about high school GPA, high school track and the bachelor degree programme
to which the student is admitted. The graduation probabilities form the ba-
sis for calculating the admission thresholds for each of the three tracks in the
four programmes. Furthermore, I calculate the increase in the graduation
rate from a change in the admission system from a common GPA threshold
for the three high school tracks (the present system) to the optimal admission
system, in which the thresholds di¤er for the three tracks.
After presenting the theory and the empirical analysis, I discuss students�

reactions to a transition to an optimal admission system. Two types of po-
tential reactions are relevant. First, the students may behave strategically
during the application and admission process, that is, the change in admis-
sion system may change the students�choices of programmes and universi-
ties. I outline the circumstances under which strategic behaviour of students
can be ruled out. Second, I analyse how a transition to optimal admission
may change students�choices of subjects in high school. Optimal admission
changes the intake of students at the margin towards students from high
school tracks that have a documented positive impact on the students�grad-
uation probabilities. As the new system makes admission easier for students
from these high school tracks, more students may thus choose the tracks that
make admission easier. Students who choose these high school tracks are, per
construction, more likely to pass university exams. A change to optimal ad-
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mission to universities thus has the potential to increase entire cohorts of
students�likelihood of graduating with a higher education degree.
Two recent articles provide a framework for relating the topic and the

contribution of the present paper to the previous economic literature on
higher education. The survey by Altonji et al. (2012) formulates a theory
for the choice of �rst, the high school �eld of study, then the choice of col-
lege major, and �nally the choice of occupation in the labour market. This
sequential choice model is supposed to be solved backwards, such that exoge-
nous shocks to occupational speci�c wages and consumption are re�ected in
choices in the educational system. The elements of the theory include mul-
tiple levels of education and curriculum choices, and that the agents update
their beliefs about ability and preferences. Altonji et al. (2012) also survey
the empirical literature on the impact of choices in high school and college on
labour market outcomes and note that most authors take simpler approaches
as �it is a complicated model; to include all the detail we have suggested may
be almost impossible in practice�(Altonji et al. (2012) p. 14).
This paper focuses on the part of the model in Altonji et al. (2012) that

relates to the transition from high school to tertiary education (university or
college). Changes in admission criteria alter the admission chances for high
school students from di¤erent tracks and may thus have an impact on their
choice of high school track. The optimal admission in this paper is derived
from maximization of graduation rates at college. Neither in their theoretical
model nor in their empirical survey do Altonji et al. (2012) consider college
attrition explicitly. Thus the inclusion of attrition in college in a dynamic
choice model entails an extension of the (already complicated) model by
Altonji et al. (2012).
Moreover, Fu (2014) analyses applications, admission and enrolment in

the college market. She assumes that a private college maximizes a payo¤
function consisting of the weighted sum of the net tuition revenue of the
students and the abilities of the admitted students. The number of admit-
ted students is �xed in the model. The framework is an equilibrium game
theoretical model that includes the choice of students, and she estimates this
model using data for the US college market. Fu (2014) extends earlier con-
tributions on tuition choice and admission criteria (e.g. Epple et al. (2006)
and Gary-Bobo and Trannoy (2008)).
None of these contributions consider university attrition rates as a part

of an element of relevance for admission criteria to universities. However,
under additional assumptions, the criteria function in this paper becomes
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equivalent to the payo¤ function for a private college in Fu (2014). Assume
that the state provides funding to a public university only for students who
pass exams. This assumption implies that maximization of graduation rates
for a public university becomes equivalent to maximization of tuition fees for
a private college. In Denmark the state funds universities only for students,
who pass exams, not for students who do not, thus making the funding el-
ement of the criteria function for a Danish public university equivalent to
that for an American private college in Fu (2014). The other element in the
criteria function in Fu (2014) is the quality of the admitted students. How-
ever, if the quality is measured by students�ability to graduate from college,
then maximization of the quality of admitted students becomes identical to
maximization of graduation probability.
Although neither Altonji et al. (2012) nor Fu (2014) consider college at-

trition, this problem is an issue in the empirical literature on American higher
education. The American literature includes Bound and Turner (2011), who
survey the economics literature on college enrolment and completion with a
focus on the limited US growth in college enrolment and �at college comple-
tion rates over time. The empirical analysis includes issues such as student
preparedness, student funding, parental background, college resources and
the costs and gains of college education. Bowen et al. (2009) study com-
pletion in US public colleges. One of the results of their empirical analysis
is that high school grades are much better for predicting college completion
than the Scholastic Assessment Test (SAT) scores. Another strand of the
American literature deals with the ability of the SAT test to predict college
admission (e.g. Manski and Wise 1983) and freshman grades (e.g. Rothstein
2004). In combination with high school grades, US colleges and universities
use the SAT score for determining admission. For example, the University
of California constructs an admission index consisting of a weighted average
of SAT scores and high school grades. If a student from a public secondary
school in California has a score above a certain threshold on this index, this
student is automatically admitted to the University of California system1. In
addition to pre-college grades learning about academic performance during
college plays a role according to Stinebrickner and Stinebrickner (2014) who
assess that 45 per cent of dropout in the �rst two years of college can be
attributed to what students learn about their academic performance. The

1See the �admission index� at University of California,
http://admission.universityofcalifornia.edu/.
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problem of attrition in the US higher educational system �gures prominently
in the educational and sociological literature, where the seminal contribution
is Tinto (1993).
The interplay between university preferences for students (as expressed

in, e.g. admission rules) and student preferences for universities is analysed
in the literature on the �college admission problem�(Gale and Shapley 1962,
and Roth and Sotomayor 1990). The contributions in this literature are
useful for analysing potential strategic behaviour by students. A separate
section of this paper analyses this issue and clari�es how the contribution in
this paper relates to the literature on the college admission problem.
The social science programmes in the empirical analysis are three-year

structured programmes at the University of Copenhagen leading to a bach-
elor degree in a speci�c �eld (or �major� in American terminology). As in
many other European countries the choice of programme is concurrent with
initial enrolment: students are admitted to speci�c programmes within the
university (Bound and Turner 2011, p. 586). The empirical results in this
paper may thus be of direct relevance to policy makers in many countries.
The contributions in this paper are applicable at several levels of decision-

making: for constructing admission rules for one programme at one univer-
sity, for joint admission rules for several programmes in one university, and
for joint admission criteria for programmes across several universities.
Increased graduation rate from higher education, better preparation in

upper-secondary school for enrolment in higher education, and the conse-
quent higher skill level of the work force may not be the only objectives
of higher education admission policies. Other goals may include access to
higher education for groups of students from a variety of backgrounds. Such
goals might or might not be in con�ict with the e¢ ciency considerations in
this paper.
To the extent that other goals are in con�ict with e¢ ciency, this paper

establishes a framework for calculating the costs of pursuing these goals in
terms of lower graduation rates. However, as Bound and Turner (2011), p.
603 state: �That college completion is a central outcome of higher education
and a critical input for labor-market success and economic growth is not in
dispute�.
The paper is organised as follows. Section 2 derives the optimal admission

rules that maximise graduation rates in the higher education system. The
section also derives an analytical expression for the approximate increase
in graduation rates. Section 3 contains a breif description of the Danish
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educational system. Section 4 presents the data. Section 5 demonstrates
how to estimate the parameters of interest and use them for construction of
optimal admission rules. Section 6 establishes the relation between optimal
admission procedures and the issues considered in the literature on the college
admission problem. Section 7 traces the impact of a change from non-optimal
to optimal admission procedures on the choice of subjects by students in
secondary school. Section 8 analyses how this behavioural change alters
the observed graduation rates for groups of secondary school students. The
impact on graduation rates depends on the extent to which di¤erences in
graduation rates are due to self-selection or to a heterogeneous impact of
subjects across students. Section 9 concludes.

2 Maximisation of graduation rates

This section contains the formal analysis of admission to higher education
viewed as an optimising problem. I �rst outline the framework and then the
content of the section.
I assume that the authority that decides admission criteria to programmes

at a university has a goal that can be stated as an objective function. I further
assume that the goal of the authority is to maximise the graduation rates of
those programmes.
As mentioned in the introduction, this objective function is equivalent to

the objective function in Fu (2014) if the university is funded for students
who pass their exams at the university, but not for students who do not
pass. Furthermore, I assume that the number of students admitted to each
programme is �xed, which makes the assumption equivalent to the ��xed
capacity�assumption in Fu (2014).
First, this section proves the admission rule that is the result of the max-

imization problem, the �optimal admission rule�. Second, the section calcu-
lates how much optimal admission changes admission thresholds compared
to a system with a common threshold (i.e. students with GPAs above these
thresholds are admitted and students with GPAs below are not). Third, the
section develops an expression for the increase in graduation rates that is the
result of introducing optimal admission rules.
As grades in Denmark are comparable across high schools, GPAs are

used as a measure of general ability to study at universities. The admission

7



authority has information about the distribution of the applicants to each
programme with respect to their high school tracks and high school GPAs.
Students can choose several tracks or types of school in the secondary

school system before applying to higher education. Secondary school tracks
are denoted i, i = 1; 2; :::; n. The threshold GPA for track i is denoted gi,
and the total number of admitted students from track i becomes

�i (gi) = Ai

Z gmax

gi

fi (k) dk; (1)

where gmax is the maximum grade, fi (k) is the density function for the num-
ber of applicants with a GPA of k, and Ai is the total number of applicants
with a secondary school certi�cate from track i.2

This section takes the choice of students as given, implying that the func-
tion, fi (k), is taken as given. Sections 6, 7 and 8 in the paper analyse the
choice of students given the change to optimal admission.
Graduation is denoted by y, which takes the value 1 for graduating and

0 for not graduating. The probability of graduating for a student from track
i with GPA k is denoted by pi (k), that is

pi (k) = P (y = 1jk; path i) = E (yjk; path i) :
This section assumes that pi (k) increases in k, @pi (k) =@k > 0. The case

when higher grades in secondary school do not increase graduation probabil-
ity is simple and is covered by an example in the empirical section.
The expected number of students graduating from the programme be-

comes

Ki (gi) = Ai

Z gmax

gi

pi (k) fi (k) dk:

The number of students �nishing the programme decreases in the admission
threshold, whilst Ki (gi) =�i (gi), the share of students graduating from the
programme, increases in the admission threshold.

2The interpretation of the expression is straightforward if students apply to only one
university programme. However, students often apply to more than one programme. In
this case the function is the density of students after the process has taken place that
allocates students to di¤erent programmes. See the next section for a description of this
allocation process in Denmark.
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The goal is to maximise the number of students graduating from the
programme,

Pn
i=1Ki (gi), given a �xed number admissions

� =
nX
i=1

�i (gi) :

The number of admitted students, �, is exogenously given.
The solution must entail that the admission thresholds do not exceed the

maximum grade
gi � gmax; i = 1; 2; :::; n:

The Kuhn-Tucker stationarity conditions for maximisation become

@

@gi

"
nX
i=1

Ki (gi)

#
+ �

@

@gi

"
nX
i=1

�i (gi)

#
� �i =

�Aipi (gi) fi (gi) + �Aifi (gi)� �i = 0; i = 1; 2; :::; n: (2)

The complementary slackness conditions are

�i (gi � gmax) = 0; i = 1; 2; :::; n:

If gi = gmax, students from group i are not admitted to the programme.
Interior solutions, gi < gmax, imply �i = 0 for the admitted groups. Hence, for
two groups admitted to the programme, group i and group j, a reformulation
of (2) gives

� = pi (gi) = pj (gj) : (3)

This is the rule for optimal admission to higher education. Threshold
GPAs for groups of students should be set to equalise marginal graduation
probabilities. The expected number of graduating students is maximised
when the last admitted student from each of the groups has the same prob-
ability of graduating from the programme. The threshold values neither
depend on the number of applicants, Ai, nor on the distribution of students
according to grades in secondary school, fi (gi).
Figure 1 contains a stylised illustration of the optimal admission rule in

the case of two groups of students, group i and group j. The conditional
graduation probability is assumed to be linear, with the same slope for both
groups.
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Figure 1 around here

The admission system with a common threshold GPA value, g, is illus-
trated by the dotted vertical line, denoted �Not optimal�. The di¤erence in
graduation probability between the two groups corresponds to the distance
pi (g) � pj (g). Transition to the optimal admission system involves a move
from pi (g) to pi (gi) for group i students and a move from pj (g) to pj (gj) for
group j students. On the horizontal dotted line, the marginal graduation
probability is the same for the two groups, pi (gi) = pj (gj). This admission
rule is optimal in the sense that no further improvement in the aggregate
graduation rate is possible for a given number of admitted students. Opti-
mal admission to higher education is horizontal, not vertical.
The second step in the analysis is to obtain the di¤erences in admis-

sion thresholds in terms of the parameters of the problem, the slopes of
the conditional graduation functions, and the di¤erence in initial graduation
probabilities. A Taylor expansion of the conditional graduation probability
function around g gives

pi (gi) = pi (g) + p
0
i (gi) (gi � g) ; i = 1; 2; :::; n; (4)

where p0i (gi) is the slope of the conditional graduation probability function
for students from track i evaluated at GPA level gi, which lies between gi
and g. Furthermore, assume a constant slope in the relevant range of grades,
p0i (gi) = p0i. For another group of students, j, assume a constant slope in
graduation probability, p0j

�
gj
�
= p0j, which di¤ers from the slope of group i

by a constant, p0j = p
0
i + �ji.

These assumptions about the slopes for group i and j, in combination with
the optimality condition (3), yield the di¤erence in admission thresholds

gj � gi = [(pi (g)� pj (g))� (gj � g)�ji] =p0i: (5)

The �rst part of the right-hand side, (pi (g)� pj (g)) =p0i, is the di¤erence
in admission thresholds if group i and group j have the common slope p0i.
If the graduation probability for group i is higher than that for group j,
evaluated at the common threshold g, pi (g) > pj (g), the threshold GPA for
group j has to be higher than that for group i, gj > gi. The larger the dif-
ference in graduation between the two groups at the common threshold, the
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larger the di¤erence in the threshold GPAs will be. When the denominator
p0i is large, that is, when a large di¤erence exists in graduation rates between
students with high and low GPAs, a small di¤erence between the threshold
GPAs amongst the two groups will equalise the marginal graduation rates.
The second part of the right-hand side of (5), (gj � g)�ji=p0i, adjusts the

di¤erence in threshold GPAs for the impact of di¤erent slopes in conditional
graduation probability. If group j has a larger slope than group i, �ji > 0,
the di¤erence in threshold GPAs, gj � gi, is reduced, whilst �ji < 0 implies a
larger di¤erence in threshold GPAs relative to the case with a common slope.
In the case of a common slope, I have obtained the di¤erence in admission

grades between groups of students but not the change from the common
threshold gi� g. As Figure 1 illustrates, I have determined the magnitude of
the horizontal line from pi (gi) to pj (gj) but not the height or location of this
line segment. I now consider how to determine this location that depends on
the relative number of students in the groups.
When an admission threshold is lowered, the number of new students

depends on the distribution of applicants, which is an unknown. The fol-
lowing calculations apply the simplifying assumption that the densities are
constant in the relevant ranges of GPAs, fi (k) = fi (amounting to a zero
order approximation of the true, unknown distribution by a local uniform
distribution function)3. From (1) I obtain the number of admitted students
before and after the change in the admission threshold, and the change in
the number of admitted students becomes

��i (gi) = �Aifi�gi; �gi = gi � g:
As
Pn

i=1��i (gi) = 0, the change in the admission threshold for group j
becomes

�gj = gj � g =
nX
i=1

si (gj � gi) ; (6)

where

si = Aifi=

nX
i=1

Aifi;

nX
i=1

si = 1:

3It is straightforward to adjust the exposition in the following by replacing the as-
sumption of a local uniform distribution with alternative distributions. However, such an
amendment would make the exposition substantially more involved, with limited gain in
insight.
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As fi is the density of applicants and Ai the number of applicants, si is
thus the share of group i students amongst the applicants.
Expression (6) shows that the admission threshold for each group of stu-

dents can be calculated from the share of students of the di¤erent groups
and the di¤erences in admission thresholds from expression (5). In the case
of common slopes, the change in the admission threshold appears directly
on the left-hand side of (6). When the slopes di¤er for groups of students,
expression (5) inserted into (6) yields an equation with the solution

�gj = gj � g =
nX
i=1

si f[pi (g)� pj (g)] =p0ig =
 
1 +

nX
i=1

si�ji=p
0
i

!
: (7)

In Figure 1 a large share of group i students will result in a large increase
in the threshold GPA for group j students, and, correspondingly, a small
decrease in the threshold GPA for group i students. The horizontal distance
from gi to gj in Figure 1 is divided into two line segments corresponding to the
share of the two groups in the pool of applicants. This division determines
the height of the dotted horizontal line denoted �Optimal�.
The �nal step is to assess the magnitude of the gain in graduation rates

by applying the optimal admission rule. I deduct an analytical expression for
the approximate gain under the previously applied simplifying assumption
of constant densities, fi (k) = fi, as in (6) and constant and identical slopes
of the graduation probability functions, p0i = p0j = p0, (when the slopes
di¤er, a sensitivity analysis is performed by inserting alternative values).
Furthermore, assume without loss of generality that the grade distribution
is centred at 0, that is, g = 0.
With these assumptions the change in the number of group i students

graduating from the programme becomes

�Ki (gi) = Aifi

Z 0

gi

pi (k) dk;

which in normalised form becomes

��i (gi) = �Ki (gi) =
nX
i=1

Aifi = si

Z 0

gi

pi (k) dk: (8)

As the number of admitted students does not change, the introduction of
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optimal admission rules implies an increase in the graduation rate K=� by

�K=� =

 
nX
i=1

Aifi=�

!
nX
i=1

��i (gi) : (9)

The increase in the graduation rate is thus proportional to the sum of the
normalised changes in graduation,

Pn
i=1��i (gi), where the scaling factor isPn

i=1Aifi=�.
Inserting (4) in (8) gives

��i (gi) = �sipi (0) gi �
1

2
sip

0g2i : (10)

A decrease in the threshold, gi < 0, implies that more students from the
group enter and graduate from the programme. The �rst term on the right-
hand side is positive and corresponds to a graduation probability for all
new admitted students of pi (0). The second term is negative, taking into
account that the graduation probability for the marginal student decreases
when the threshold is lowered. In Figure 1 the �rst term corresponds to a
rectangle with base gig and height pi (g), whilst the second term corresponds
to a triangle with base gig and height p0gig (situated at the location of the
downward sloping arrow). When fewer students are admitted, gi > 0, the
interpretation of (10) is analogous.
Adding (10) over the di¤erent groups of applicants and applying (6) yields

the following expression for the change in graduation for the programme

nX
i=1

��i (gi) = �
nX
i=1

sipi (0)
nX
j=1

sj (gi � gj)�
1

2
p0

nX
i=1

sig
2
i : (11)

The �rst term on the right-hand side of (11) is the sum of the e¤ects when
students a¤ected by the change in admission thresholds are assumed to have
graduation probabilities equal to the marginal students admitted at the com-
mon threshold. The second term is the sum of the terms that correct for the
fact that not all students in the groups that experience either increases or
decreases in size have graduation probabilities equal to the marginal students
admitted at the common threshold.
Inserting (5) into (11) yields the expression for the increase in the grad-

uation rate for the programme in terms of the parameters of the problem.
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The case of n = 3 will su¢ ce for both the purpose of analytical insight and
the use of this insight in applications (n = 3 corresponds to the number of
groups in the empirical section that follows).
The result for the gain in the graduation rate for the programme is

3X
i=1

��i (gi) =
��
s1s2 (s1 + s2) d

2
21 + s2s3 (s2 + s3) d

2
32 + s1s3 (s1 + s3) d

2
31

�
=2p0

	
+s1s2s3 (d21d23 + d32d31 + d31d21) =p

0; (12)

where d21 = p2 (0)� p1 (0), d32 = p3 (0)� p2 (0) and d31 = p3 (0)� p1 (0).
The gain in the graduation rate is high when the initial di¤erences in

graduation rates between the groups are large (large numerical values of
p2 (0) � p1 (0), p3 (0) � p1 (0) and p3 (0) � p2 (0)). A large increase in the
graduation rate as GPAs increase (high p0) implies a small gain in the ag-
gregate graduation rate, whilst a small value of this slope implies that many
students with low graduation rates are replaced by students with high grad-
uation rates. Reshu ing between two groups gives the highest gain in the
graduation rate when the two groups are of equal size (e.g. s1 = s2), as equal
group size implies that many students with low graduation rates are replaced
by many students with high graduation rates.
Expression (12) for the gain in the aggregate graduation rate applies

to one programme. Programmes will di¤er in increases in graduation rates
according to the variation in (1) di¤erences in initial graduation rates between
various groups of students, (2) the derivative of the graduation probability
as a function of GPA, and (3) the composition of the intake of students from
di¤erent groups.

3 Institutional setting

The following brief description of the Danish education system provides the
background for understanding the empirical results in the paper. The de-
scription includes the upper secondary school and the bachelor level higher
educational systems.
The Danish upper secondary school system is essentially a two-tiered sys-

tem in which about 40% enter apprenticeship training,4 whilst the majority of

4Similar to that in Germany, see Albæk (2009) for an overview of the Danish appren-
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the remaining 60% enter upper secondary schools (�gymnasium�), which are
a prerequisite for admission to higher education. Upon entrance to the upper
secondary school, students choose between di¤erent tracks. The data for the
analysis in this paper stems from a period in which students in the major
upper secondary schools (the �general�high school) had to choose between
the �mathematics track� (with emphasis on mathematics and science) and
the �language track�(with emphasis on languages). In addition to these two
tracks separate upper secondary schools o¤er courses with more specialised
curricula, which also qualify students for admission to higher education.
The Danish Ministry of Education attempts to make grades comparable

across secondary schools. Written exams set by the Ministry are mandatory
in all secondary schools, and grading is monitored by the Ministry. Oral
exams are conducted by both the teacher and an external moderator. Thus
the expectation is that the GPAs from Danish high schools are better pre-
dictors of graduation than those from the more fragmented US high school
system (even though US GPAs nevertheless are good predictors for college
completion (see Bowen et al. (2009, ch. 6)).
Upon successful completion of upper secondary school, students may be

eligible to enter university, the �rst step of which is typically a bachelor
degree. A bachelor student is expected to graduate after three years of study.
The success criteria in this paper is graduation within four years. A central
national admission o¢ ce receives data for every programme at every college
and university in the country. These data include the number of students
to be admitted and the prerequisites that the students have to ful�l for
admission to each particular programme (e.g. successful completion of certain
high school subjects). Each high school student submits a ranked preference
list of desired programmes to the central admission o¢ ce (students cannot
apply directly to Danish colleges or universities).
The central admission o¢ ce ranks all applicants to the programmes ac-

cording to their high school GPA. The student with the highest GPA is
admitted to the top programme on her preference list, the student with the
next highest GPA is also allocated to the top programme on her preference
list and so forth. At some stage the allocation process gets to a point, where
there are no more places available in the programme of the next students�top
priority, and she is admitted to her second priority (if no places are available
on this programme, the algorithm continues to her third priority). Then the

ticeship system.
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next student is allocated to a programme and so forth until the allocation
process stops, either from lack of students or from lack of education places
in the programmes. The central admission o¢ ce then noti�es each student
as to which programme and university they have been admitted and noti�es
the universities which students have been admitted to which programmes.
Students not admitted to the programmes for which they have applied

are referred to a list of programmes with vacant places. Such programmes
are characterised by good employment prospects for graduates in the present
Danish labour market, such as engineering and primary school teaching. This
indicates that the Danish government cares about the numbers of students in
higher education and that a goal of the government is to increase enrolment
in programmes from which graduates have good labour market prospects.
Other government goals with respect to higher education can partly be

inferred from the funding of higher education. All funding is provided from
general revenue, as students do not pay tuition fees. On the contrary, univer-
sity students receive a stipend while studying (the amount was 9,500 Euros
in 2015). In addition, students are entitled to receive government loans, to be
repaid after graduation (the amount was 4,800 Euros in 2015). These �gures
indicate that the Danish government also cares about equality of access to
higher education.
However, the stipend payments cease if the student does not pass ex-

ams within a speci�ed time (each passed exam yields some points and each
programme has a number of points that must be obtained each semester).
This indicates that the Danish government cares about e¢ ciency in higher
education.
As noted in the introduction, the government only pays higher educa-

tional institutions for students who pass their exams, whilst no funding is
provided for students who do not pass. This funding scheme also indicates
that the Danish government cares about e¢ ciency in higher education.

4 Data

This section describes the data that I use for illustrating the optimal admis-
sion rules that were derived in section two of the paper. The application of
the data follows in the next section.
I use data for students admitted to the four largest bachelor programmes
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in social sciences at the University of Copenhagen. The data contain all
10,418 students admitted to these four programmes between summer 1984
and summer 2001, and contain information about high school GPAs, high
school tracks and the bachelor programme to which the student is admitted.5

As Table 1 shows, the largest share (46%) of university students in the four
social sciences programmes come from the mathematical track of the upper
secondary school, whilst 25% come from the language track. The remaining
30% come from various types of specialised uppper secondary schools. For
the present purpose this last group of students is categorised as �other�.

Table 1 around here

Table 1 shows that the average graduation rate for all students in the
social sciences was 55%. This rate is higher than the �gures for the US in
Bound, Lovenheim and Turner (2010). Students who do not graduate consist
of both dropouts from higher education and those who transfer to another
programme.
Table 1 ranks the programmes according to total number enrolled. The

law programme with 47% of the students is the largest, whilst the psychology
programme with 12% is the smallest.
On average, students from the general secondary schools have higher grad-

uation rates than students from the �other�group: the di¤erence is a signif-
icant 21 percentage points. In total no signi�cant di¤erence in graduation
rates appears between the mathematics and the language groups. However,
when signi�cant di¤erences exist between the mathematics and the language
groups within the four individual programmes, the mathematics students
have higher graduation rates. The low aggregate graduation rate for math-
ematics students is partly a consequence of the low graduation rate in the
economics programme, which attracts a substantial share of all mathematics
students.
Figure 2 shows the high school GPA distribution for the students in the

four university programmes: the top panel displays the distribution of the
three secondary school tracks for each of the programmes.6 The main in-

5The data stem from the admission o¢ ce at the University of Copenhagen.
6The secondary school grades of the students in the data are standardised by subtract-

ing the mean of the grades and dividing by the standard deviation for the population
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ference drawn is that only minor di¤erences appear in grade distribution
amongst the three groups in any of the programmes.

Figure 2 around here

In the bottom panel of Figure 2, the three groups are combined, showing
that economics students have lower grades than those in the law programme;
the law students in turn have lower grades than those in political science and
psychology. Most students are admitted to the various programmes solely
on the basis of their secondary school GPAs. The threshold GPAs varied
between 0 for the economics programme to nearly 2 for psychology. As the
grade distribution for the population of Danish secondary school students is
approximately normal, only a tiny fraction of secondary school students is
eligible for social sciences programmes other than economics and law. How-
ever, a minority of varying magnitude (10-30%) are admitted on the basis
of supplementary criteria (e.g. work experience, volunteer work). These ad-
missions imply that data exists not only for students with GPAs above the
acceptance threshold but also for those with GPAs below it.

5 Empirical analysis of optimal admission

This section illustrates the application of the rules for optimal admission
developed in section two. I illustrate the application using the data for the
four social science bachelor programmes at the University of Copenhagen,
described in the previous section. The data are used for deriving admis-
sion rules that maximize the graduation probability for students admitted
to these four programmes. Furthermore, I calculate the resulting increase in
graduation probability for the programmes.
According to the optimal admission rule in section two, expression (5),

two pieces of information are su¢ cient for calculating the di¤erence in GPAs
between di¤erent groups in the case of a common slope: (a) the di¤erence

of Danish secondary school students. The grading scale in the sampling period was the
�13-scale�, which ranges from 0 to 13. The average GPA for all students in the common
high school was approximately 8, and the standard deviation was about 1.
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in graduation probability at the common threshold and (b) the slope of the
graduation probability with respect to grades. Furthermore, to identify the
location of the di¤erentiated thresholds according to expression (6), we need
information about (c), the local share of the groups of students. Accord-
ing to expression (12), this information is also su¢ cient for calculating the
approximate gain in graduation rates.
The empirical analysis thus demands not only estimation of the grad-

uation probability function conditional on GPA, which is likely to exhibit
non-linearities, but also the slope of the conditional graduation probability
function. In contrast to many standard non-parametric regression methods,
local polynomial regressions enable slope estimation and I thus choose this
method to identify the position and the slope of the conditional graduation
probability functions.
A brief exposition of the procedure is as follows. The graduation proba-

bility for student s is denoted ys, which takes the value 1 for graduating and
0 for not graduating. The independent variable, the student GPA, is denoted
xs. Following Wand and Jones (1995, p. 118), the conditional expectation
E [ysjxs = x0] from polynomial regression can be computed from the solution
to the minimization problem

min
a;b1;b2

NX
s=1

�
ys � a� b1 (xs � xo)� b2 (xs � xo)2

�
K

�
xs � xo
hN

�
where K () is a kernel function and hN is a bandwidth that converges to zero
as N ! 1. The degree of the polynomial must be at least one in order
to take the derivative and estimate the slope of the conditional expectation
function. The conditional expectation functions estimated from a polynomial
of degree two exhibit slightly more curvature than the functions estimated
from a local linear estimator, and I set the degree of the polynomial to two.
The kernels are Gaussian. The bandwidth is set at 0.62 for the largest group
of students, mathematics students in the law programme. The bandwidths
for the remaining groups are increased according to the asymptotics of the
plug-in bandwidth, which minimise the mean square error of the regression7.

7For a programme with sample size n the bandwith becomes h0 (n0=n)
2=9, where h0 is

the bandwith for the law programme and n0 is the sample size for the law programme.
This expression is obtained from the formulas in Wand and Jones (1995, p. 139).
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All data points enter the estimations, including the tails of the grade distri-
bution, where data are slim and inference imprecise. I show the results for
GPAs from -1 to 2.5, the relevant range for admission policy.
Figure 3 presents the estimates of the expected probability of graduat-

ing, conditional on secondary school GPA. The �gure shows the expected
graduation probability for the three secondary school tracks for each of the
four programmes. The expected graduation probabilities are calculated from
the local polynomial regression functions. The conditional expectation func-
tions are highly nonlinear, demonstrating that non-parametric estimation is
adequate.

Figure 3 around here

In the three largest programmes � law, economics and political science
�the graduation probability increases with secondary school GPA for most
tracks of students (the exceptions are mathematics students in economics
with very high GPAs and other students in political science with GPAs above
1). In psychology, graduation probabilities are constant for mathematics
students with GPAs above 0 and for language students with GPAs above 1.8

Optimal admission rules appear in Figure 3 as horizontal lines. For the
law programme, the marginal graduation probability for the groups is set at
0.60. The graduation probability for other students is below the horizontal
line for all levels of GPA. Consequently, this group should not be admitted
to the law programme. The height of the horizontal line is found as follows:
when the group of other students does not enter the programme, the intake of
mathematics and language students increases to ensure an unaltered number
of students in the programme. This increase takes place through lowering
the common threshold for mathematics and language students to 0.5.

8If no students below the common admission thresholds were admitted, the conditional
graduation functions would be truncated at the common threshold. In such a case ex-
trapolation of the conditional graduation functions below the threshold is neccessary for
constructing optimal admission thresholds. Graduation probabilities below the common
thresholds in Figure 3 are not estimates of population parameters but are contingent upon
the policy determining admission of students with GPAs below the common threshold. To
the extent that institutions are able to identify students with a high probability of gradu-
ating, contingent on their GPA, the graduation probabilities below the common threshold
in Figure 3 are higher than the average amongst the applicants.
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The values of the graduation probabilities in Figure 3 appear in Table 1:
0.649 for mathematics students and 0.586 for language students. The slopes
of the curves in Figure 3 appear in Figure 4, and for the law programme the
slopes at GPA level 0.5 also appear in Table 1: 0.090 for the mathematics
students and 0.040 for the language students. In expression (7) I insert the
information about the slopes, the shares of the two groups and the di¤erence
in graduation probability, thereby obtaining the threshold changes that ap-
pear in Table 1: a decrease in the threshold for mathematics students of 0.5
and an increase for language students of 0.5.9 The graduation probability is
0.6 for both mathematics students with a GPA level of 0 and for language
students with a GPA level of 1 according to Figure 3. The optimal admission
rule for the law programme is thus shown as a horizontal line with the height
of 0.6.

Figure 4 around here

The gain in the graduation rate for the law programme is assessed in three
steps: an increase when the university admits only the previous number of
students from the general secondary school (5.9 percentage points), a de-
crease when the admission threshold is lowered and more general secondary
school students are admitted (-0.3 percentage points), and an increase in
the graduation rate when a di¤erentiated threshold equalises the marginal
graduation rate between mathematics and language students (0.7 percent-
age points).10 The result is the increase in graduation rate by 6.2 percentage
points shown in Table 1, corresponding to an increase of 10.4% in the number
of graduating law students (0.065 divided by the previous average graduation
rate of 0.598).
For the economics programme, all three groups of students are admitted

after the change from a common threshold to the optimal admission rule. The
common threshold is 0.0, and for each of the three groups, Table 1 lists the

9The top panel of Figure 2 shows that the density functions are approximately iden-
tical for the three groups of students. I assume that the (unobserved) distributions of
the applicants are also identical and that the shares of students in Table 1 apply in the
calculations.
10The gain from implementing a di¤erentiated threshold is obtained from (9) and (12).

On the basis of simulations, I assess the correction factor in (9) to be 0.5 for the pro-
grammes analysed in this paper.
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estimated graduation probabilities in Figure 3 and the corresponding slopes
of the conditional graduation functions in Figure 4. Inserting these values
into (7) gives the change in admission threshold listed in Table 1: -0.2 for
mathematics students, 0.1 for language students and 0.6 for other students.
The optimal di¤erence in admission thresholds between mathematics and

language students is thus 0.3 for the economics programme, which is smaller
than the threshold di¤erence of 1.0 between mathematics and language stu-
dents for the law programme. It should thus be easier for language students to
be admitted to the economics programme than to the law programme. This
�nding is valid despite language students in the relevant ranges of GPAs
having more di¢ culty graduating in economics than in law (as the verti-
cal distance between the conditional graduation functions in Figure 3 makes
clear).11 The reason is that the slopes of the conditional graduation func-
tions are substantially higher in the economics programme than in the law
programme in the relevant GPA ranges, as both Figure 4 and the values of
the slopes at the common thresholds in Table 1 make clear.
For the economics programme the gain in the aggregate graduation rate

from adopting the optimal admission rule is modest. Application of the ap-
proximation (12) yields an increase in the aggregate graduation rate of 0.7
percentage points when the slope for the other group enters the calculation (a
sensitivity check yields 0.5 percentage points when inserting the larger slope
for mathematics group, whilst the smaller slope for the language group gives
1.0 percentage point). The main reason for the small gain is the high associa-
tion between grades and graduation probability in the economics programme,
implying a small reallocation between the groups before the graduation rates
for the marginal students are equalised. As the initial graduation rate is
0.401 for the economics programme, the expected increase in the number of
graduating students is 1.8%.
The political science programme has a common threshold for mathemat-

ics and language students, whilst no students from the �other� group are
admitted. The increase in the graduation rate is estimated at 6.8 percentage
points.
For the psychology programme, the horizontal line corresponds to a grad-

uation probability of 0.67. Irrespective of GPA, mathematics students have

11At a GPA level of 1.0 (the admission threshold for language students in the law
programme), language students have a 9% lower graduation probability than mathematics
students in the law programme but an 18% lower graduation probability in the economics
programme.
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graduation probabilities above the line, whilst language students and stu-
dents from the �other�group have graduation probabilities on or below the
line. As mathematics students have higher graduation rates than the two
other groups, irrespective of GPA, admitting only mathematics students
maximises the graduation rate for the psychology programme. This �nd-
ing proves valid despite the comparatively low advantage of being a mathe-
matics students in the psychology programme: the di¤erence in graduation
probability is about 5 percentage points in the GPA range 1-2.5.
The highest increase in graduation comes from changes in admission to

the psychology programme. In this programme higher grades do not lead
to a higher graduation probability, so expression (12) for the gain in the
graduation rate is not valid (as p0 = 0). However, a simple calculation
shows that the gain in terms of increase in aggregate graduation rate is
a substantial 13.6 percentage points.12 As the initial graduation rate was
55.9%, introducing the optimal admission rule is expected to increase the
graduation rate of psychology students by 24.3%.
The di¤erence in graduation rates between mathematics students and

language students is statistically signi�cant for the law, economics and psy-
chology programmes (see the standard errors in table 1). Figure 3 shows
small di¤erences in graduation rates in the lower part of the grade distri-
butions for both the law and the economics programmes; thus the larger
di¤erences in graduation rates in the upper part are signi�cant.
For the four social science programmes in total, the gain in graduation

rate from a transition to an optimal admission system is substantial. The
estimated increase in the number of graduating students is a sizeable 10.3%.
This section has illustrated how to maximise graduation rates in higher

education programmes by admitting more students with a high graduation
probability and fewer students with a low graduation probability. The results
show that mathematics students, conditional on GPA, should be admitted
more frequently to the law, economics and psychology programmes than
students from other high school tracks.
The change in admission structure can have derived consequences both

for students� choice of university programmes and for students� choices of
subjects in secondary school. I consider these issues in the following sections.

12The statistics for graduation rates and shares in Table 1 enter the calcuation as
0.287x(0.695-0.621)+0.472(0.695-0.452)=0.136.
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6 Optimal admission and the college admis-
sion problem

In this section I clarify the relation between optimal admission procedures, as
de�ned in this paper, and the literature on the �college admission problem�,
which also addresses the question of allocation of students to colleges. This
section addresses the question of whether the change in admission policy
suggested in this paper leads to strategic behaviour amongst either students
or colleges, which is a topic in literature on the college admission problem.
The seminal contribution to the college admission problem is Gale and

Shapley (1962), who began by analysing a simpler problem, the �stability of
marriages�. This problem consists of two sets of agents, where each element of
one of the sets has ordered preferences for the elements in the other set. The
elements of the two sets form one-to-one matchings. The college admission
problem also consists of two sets of agents, but with the two sets instead
forming many-to-one matchings.
A core element in the matching literature is to what extent agents can

obtain a better matching by misrepresenting their true preference, that is, by
engaging in strategic behaviour. According to Roth and Sotomayor (1990),
strategic behaviour appears to be an optimal strategy in many matching
problems.
However, recent contributions (Abdulkadiroglu and Sönmez (1998) and

Svensson (1999)) have considered a particular matching procedure whereby
strategic behaviour is not an optimal strategy, namely serial dictatorship. A
good example of serial dictatorship in practice is the admission process to
higher education in Denmark, described in the section �institutional setting�.
The central admission o¢ ce ranks all applicants according to their high school
GPA. The student with the highest GPA chooses �rst (the �rst dictator), the
student with the next highest GPA chooses second (the second serial dictator)
and so forth until the allocation process stops.
The particular algorithm applied to matching students and college pro-

grammes in Denmark does not give students any incentives to misstate their
true preferences either before or after a change to optimal admission proce-
dures (moreover, in the terminology of the matching literature, the matching
is both �stable�and �Pareto e¢ cient�, see Abdulkadiroglu and Sönmez (1998)
and Svensson (1999)). Although strategic behaviour as a result of a change
in admission procedures might be a problem in other systems for matching
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students and colleges, this possibility is outside the scope of the present paper
and is left for future research.
The literature on the college admission problem analyses admission to

college given students�preferences for colleges and colleges�preferences for
students. This paper considers how colleges can construct admission rules
that increase graduation rates. In terms of the college admission problem,
this paper thus deals with how colleges or programmes can form preferences
for students (i.e. how they can rank students). The literature on the college
admission problem takes preferences as data in the analysis. Neither this
paper nor the literature on the college admission problem considers how
students form preferences.

7 The choice of subjects in secondary school

The change in admission rules may have an impact on the students�choice
of subjects in secondary school. This section establishes a framework for
analysing the choice of subjects by secondary school students. Within this
framework I trace the impact of a change in admission rules on the choice of
subjects.
Students�choice of subjects is relevant for the topic of this paper because

the curriculum in high school may have an impact on the probability of
graduating from university. I analyse this topic in the next section, which
builds on the analysis in this section.
The analytical framework in both this and the following section is the

standard model of individual choice in econometrics. The model is applied
in, for example, Heckman (1979) and reviewed in Maddala (1983).
Section two of the paper considered the choice of the authority that de-

termines admission criteria, given the choice of students. This section and
the following section consider the choice of students, given the choice of the
authority that determines admission criteria.
Assume that secondary school students choose amongst two subjects:

mathematics leading to an A-level in mathematics (the mathematics track)
and an alternative subject leading to a B-level in mathematics (the non-
mathematics track). The indirect utility for student s from choosing mathe-
matics at A-level is speci�ed as
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U sA = !
s
A + ws�A + �

s
A; (13)

where U sA is the utility from choosing mathematics at A-level, sA is the
expected grade in mathematics, ! is the weight of mathematics in calculat-
ing the GPA used for admitting students to university programmes, ws is
a vector of variables determining the preferences for mathematics with the
associated parameter vector �A, and �sA is a term that includes preferences
for mathematics beyond the expected grade and explanatory variables.
Correspondingly, the utility from choosing the alternative non-mathematics

subject leading to a B-level in mathematics, is speci�ed as

U sB = (1� !) sB + ws�B + �sB; (14)

where U sB is the utility from choosing the subject, 
s
B is the expected grade in

the non-mathematics subject, (1� !) is the weight of the non-mathematics
subject, �B is a parameter vector associated with the explanatory variables
and �sB is the error term that includes preferences for the non-mathematics
subject.
Mathematics is chosen by student s if

!sA � (1� !) sB + ws (�A � �B) > �sB � �sA:
The variance of the error term is

�2 = �2�B + �
2
�A
� 2��B�A :

The following notation is adopted when the standard deviation is applied
to normalise the error term and the covariates

�s =
�sB � �sA
�

(15)

zs =
!sA � (1� !) sB

�
+
ws (�A � �B)

�
:

The probability that student s chooses mathematics thus becomes

P (�s < zs) = G (zs) ;

where G is the distribution function of the random variable �s.
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Di¤erentiating yields

@G

@!
= g (zs)

@zs
@!

> 0;
@zs
@!

=
sA + 

s
B

�
> 0;

where g is the density function. If the weight of mathematics in the admission
criterion is increased, more students will choose this subject.
Three main assumptions drive the proof. First, students choose subjects

by comparing the gain or utility from choosing mathematics with the util-
ity from choosing some alternative subject. Second, the expected grade is
included in the gain or utility from the choices. Third, a spread exists in
student preferences for choosing mathematics or the alternative. If these as-
sumptions are ful�lled, an increased weight to mathematics in the calculation
of the GPA will move students on the borderline of choosing this subject,
whilst students with low relative preferences for mathematics will continue
to study the alternative subject.

8 Behavioural change and changes in gradu-
ation rates

The previous section traced the e¤ect of the policy change on students�choice
of subjects in high school and a change in high school subjects may have
an impact on the graduation probability of future applicants to university
programmes. This section investigates the impact of the policy change on
changes in graduation rates at universities. As in the previous section, this
one considers the choice of students given the choice of the authority that
determines admission criteria.
The analysis in this section is important for two reasons. First, better-

prepared applicants to higher education imply higher graduation rates and
potentially a higher skill level of the workforce. Second, a change in gradu-
ation probability amongst future students from di¤erent high school tracks
implies that the authority that determines admission criteria may have to
alter admission criteria.
However, in practice admission rules are adjusted frequently for other rea-

sons, such as changes over time in the educational system and other factors
that in�uence students�choices, which results in changes in the number and
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the composition of applicants to higher education.13 An adjustment of ad-
mission criteria as a consequence of a change of students�choice of subjects
in high school can thus be considered to be one extra element in the ongoing
admission criteria adjustment process.14

This section extends the model in the previous section for students�choice
of subjects in high school with a model for graduation from university. The
graduation probability for student s in a particular university programme
is denoted ys. The graduation probability is approximated by the linear
probability model

ys = Xs� + �sms + es (16)

�s = a0 + as;

where Xs is a vector of graduation determinants, including grades, � is the
associated coe¢ cient vector, ms is an indicator variable taking the value 1 if
mathematics is chosen and 0 otherwise, �s measures the change in graduation
probability that student s obtains as a consequence of studying mathematics
(that is, �s is the �causal e¤ect�of the mathematics subject on the graduation
probability for student s), and es is the error term.
The term a0 is the average change in graduation probability amongst

the population of students, and as is the deviation for student s from the
population average. The heterogeneous return to mathematics is speci�ed
as a random coe¢ cient model, which is applied in the recent literature on
the impact of schooling and training on labour market outcomes (see Card
(1999), and Heckman et al. (1999)). To obtain closed form solutions, I
assume that errors are multivariate normal as in the seminal contribution on
the random coe¢ cient model by Björklund and Mo¢ tt (1987).
The expected graduation probability for a student who has studied math-

ematics is
13E.g. the University of California frequently adjusts the �admission index�for California

residents.
14Estimation of a structural model including identi�cation of the distribution of unob-

served preferences and abilities is beyond the scope of this paper. Identi�cation requires
instruments for selection into the di¤erent high school paths (see e.g. the discussion in
Altonji et al. (2012)). The present data do not contain variables that are suitable as
instruments in such an analysis.
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E (ysjXs;ms = 1) = Xs� + a0 + E (as + esj�s < zs) ; (17)

where �s and zs are de�ned in (15).
Applying the expression for a standard normal variable truncated from

above, the expected value of the conditional error term becomes

E (�s + esj�s < zs) = ��a+e;�
g (zs)

G (zs)
; (18)

where G and g are the distribution and density functions from the previous
section of the paper, now assumed to follow the standard normal distribution.
The covariance �a+e;� between the preference term �s in (15) and the sum

of the error term es and the random coe¢ cient term as in (16) becomes

�a+e;� = �a� + �e�

�a� =
�a�B � �a�A

�
(19)

�e� =
�e�B � �e�A

�
:

The expected graduation probability for a student who has not studied
mathematics is

E (ysjXs;ms = 0) = Xs� + E (esj�s > zs) : (20)

Applying the expression for a standard normal variable truncated from
below, the expected value of the conditional error term becomes

E (esj�s > zs) = �e;�
g (zs)

1�G (zs)
: (21)

The di¤erence in expected graduation probabilities between the mathe-
matics and the non-mathematics students thus becomes

E (ysjXs;ms = 1)� E (ysjXs;ms = 0) (22)

= a0 � �a�
g (zs)

G (zs)
� �e;�

�
g (zs)

G (zs)
+

g (zs)

1�G (zs)

�
:

For the law, economics and psychology programmes at the University
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of Copenhagen, mathematics students have a higher graduation probability
than non-mathematics students conditional on GPA (see �g. 3) and the
di¤erence (22) is thus positive.
Each of the three terms on the right-hand side of (22) can contribute to

a positive di¤erence in the graduation probability between mathematics and
non-mathematics students. The �rst term contributes to a positive di¤er-
ence if the average student increases the graduation probability by taking
mathematics (a0 > 0). The second term contributes to a positive di¤erence
if and only if (see (19))

�a� < 0, �a�B < �a�A :

This inequality arises when students with high preferences for mathemat-
ics experience higher increases in graduating from the programme (the as
term in (16)) by studying mathematics in secondary school than do students
with low preferences for mathematics. The third term on the right-hand side
(22) contributes to a positive di¤erence if and only if (see (19))

�e;� < 0, �e�B < �e�A :

This case applies when students with high preferences for mathematics
have a higher unobserved probability of graduating from the programme (the
error term es in (16)) than students with low preferences for mathematics
(relative to the non-mathematics subject).
The sum of the three terms on the right-hand side of (22) is positive

but none of the three terms are necessarily positive. If, for example two of
the terms are zero, then the third must constitute the whole of the positive
left-hand side of (22).
I now consider the consequences of a policy change that gives mathematics

a higher weight in the admission criterion on the graduation probability both
for students who choose mathematics and for students who do not. The
change in the graduation probability for students who choose mathematics
follows from di¤erentiating (17) taking (18) into account. As @g (zs) =@zs =
�zsg (zs), the result becomes

@

@!

�
��a+e;�

g (zs)

G (zs)

�
= (�a� + �e�)

�
zs +

g (zs)

G (zs)

�
g (zs)

G (zs)

@zs
@!
: (23)

For zs > �g (zs) =G (zs) the term in the brackets on the right-hand side is
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positive, and calculations show that this expression is positive for all values
of zs.
The e¤ect of the policy change on graduation for students who do not

choose mathematics follows from di¤erentiating (20) taking (21) into account

@

@!

�
�e;�

g (zs)

1�G (zs)

�
= �e;�

�
�zs +

g (zs)

1�G (zs)

�
g (zs)

1�G (zs)
@zs
@!
: (24)

For zs < g (zs) = (1�G (zs)) the term in the brackets on the right-hand side
is positive, and calculations show that this expression is positive for all values
of zs.
The e¤ect of the policy change on the graduation probability depends

on the reason for mathematics students having higher graduation probabil-
ities than non-mathematic students. The previous discussion shows that
mathematics students can have higher graduation probabilities than non-
mathematic students for three reasons, and I now consider them in turn.
First, the higher graduation probabilities associated with the mathemat-

ics subject is the result of a higher average graduation probability (a0 > 0),
whilst no heterogeneity exists in the returns from choosing mathematics
(�a� = 0), or in graduation probabilities (�e;� = 0). Thus the right-hand
side of both (23) and (24) is zero, and the policy change has thus no impact
on the graduation probabilities of either mathematics or non-mathematics
students. The new students who choose the mathematics subject as a con-
sequence of the policy change experience the same increase in graduation
probability as the previous students. In terms of Figure 1, the curves for
mathematics and non-mathematics students do not change.
Second, the higher graduation probabilities associated with the mathe-

matics subject is the result of heterogeneity in the returns from choosing
mathematics (�a� < 0), whilst there is neither an increase in graduation
probability for the average student following the subject (a0 = 0), nor het-
erogeneity in graduation probabilities (�e;� = 0). In this case the right-hand
side of (23) is negative, the graduation probability for students following the
mathematics subject decreases, whilst the right-hand side of (24) is zero,
there is no change in graduation probability for students, who do not choose
the mathematics subject. Whilst the policy change induces more students
to take mathematics, these students, on average, derive less from mathemat-
ics with respect to increases in graduation probability than those who took
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this subject before the policy change. In Figure 1, the upper curve moves
downwards, whilst the lower curve remains unchanged.
Third, the higher graduation probabilities associated with the mathemat-

ics subject is the result of heterogeneity in graduation probabilities (�e;� < 0),
whilst there is neither an increase in graduation probability for the average
student following the subject (a0 = 0), nor heterogeneity in the returns from
choosing mathematics (�a� = 0). The right-hand side of (23) is negative, the
graduation probability decreases for students who choose the mathematics
subject. Whilst the policy change induces more students to choose mathe-
matics, these students, on average, have lower preferences for mathematics
and do not have the same graduation probability in the programme as those
who took the subject before the policy change. The upper curve in Figure 1
thus moves downwards. The right-hand side of (24) is also negative, the grad-
uation probability decreases for students who do not choose the mathematics
subject. The policy change induces more students to choose mathematics.
As a result, the remaining students �those who do not choose mathemat-
ics �have lower preferences for mathematics and thus a smaller graduation
probability than those who shift to mathematics. The lower curve in Figure
1 also moves downwards.
Under the assumption that giving higher weight to mathematics in the

admission criteria induces more students to take this subject, the analysis
has identi�ed three cases of outcomes. When the impact of the mathematics
subject on graduation is the same for all students, the policy change has
no impact on the conditional expected graduation functions, and the curves
in Figure 1 remain unchanged. To the extent that (some of) the di¤erence
in graduation rates between mathematics and non-mathematics students is
due to heterogeneous returns from mathematics, the expected graduation
rate for mathematics students will decrease whilst the expected graduation
rate for non-mathematics students remains the same as before the policy
change. The di¤erence between the two groups in terms of graduating from
the programme will thus diminish. In contrast, to the extent that (some
of) the di¤erence in graduation between mathematics and non-mathematics
students is due to a higher graduation probability for students with a high
relative preference for mathematics, the expected graduation rate for mathe-
matics students will decrease, and the same holds for the expected graduation
rate for non-mathematics students.
The analysis in the section is based on equation (22), which shows how

the di¤erence in the graduation probability between mathematics and non-
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mathematics students can be decomposed into di¤erent components, given
the assumptions of the model. The magnitude of the components depends on
the size of the causal impact of mathematics on graduating from university
(the term �s = a0 + as in equation (16)) and preferences for choosing math-
ematics relative to the non-mathematics subject (the term �s in equation
(15)).
However, this decomposition has no bearing on the analysis in section

2 of graduation rates and the gains in graduation rates obtained by intro-
ducing optimal admission rules. The analyses in sections 2 and 3 hinge
solely on the empirical observation that mathematics students have a higher
graduation rate than non-mathematics students, that is, that the left-hand
side of equation (22) is positive. These direct gains from optimal admission
accrue irrespective of whether the di¤erence in graduation probabilities be-
tween mathematics and non-mathematics students is due to a causal e¤ect
of mathematics on the graduation probability (the two �rst terms on the
right-hand side of (22)) or to self-selection (the third term on the right-hand
side of (22)). However, indirect gains may exist if optimal admission induces
more students to choose mathematics and if these students obtain a higher
graduation probability, that is, if there is a causal impact of the mathematics
subject on graduation probabilities.15

This section shows that the changes in the incentive structure of the edu-
cation system may have consequences for the observed outcome of choosing
mathematics subjects. The changes in graduation probabilities for students
from di¤erent high school tracks depend on the extent to which mathematics
has a causal impact on graduating from university. Changes in the observed
outcome may, in turn, imply that admission criteria to higher education need
to be adjusted.

15Joensen and Nielsen (2009) provide evidence for derived gains of optimal admission as
they �nd substantial e¤ects of advanced high school mathematics on subsequent earnings.
The authors exploit an educational reform in Denmark where a change in the content of
the high school tracks implied that more students chose advanced mathematics. The main
part of the e¤ect on earnings is indirect and goes through choice of higher education.
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9 Conclusion

This paper analyses admission policies of the higher education system and
derives a policy rule that maximises graduation rates. This �optimal admis-
sion�rule implies that the marginal graduation rates of students from various
high school tracks are equalised. Introduction of optimal admission results
in increases in graduation rates, and the paper thus contributes to the liter-
ature on college enrolment and completion, an important policy issue (see,
e.g. Bound and Turner (2011)).
Optimal admission will result in a large increase in the graduation rate

for a higher education programme if there are (1) large di¤erences in initial
graduation rates between various groups of students admitted to the pro-
gramme, (2) a small derivative of the graduation probability as a function of
GPA, and (3) an equal composition of the intake of students from di¤erent
groups.
The application of the optimal admission rule to the social science pro-

grammes at the University of Copenhagen demonstrates that mathematics
students, conditional on GPA, should be admitted more frequently to the
law, economics and psychology programmes than students from other high
school tracks. For the four social science programmes in total, the gain in
graduation from a transition to an optimal admission policy is substantial.
In combination with the theory in this paper, analogous empirical analysis

can form the basis of optimal admission rules in other educational systems.
Optimal admission could be �ne-tuned to single programmes at one uni-
versity, or common rules could be applied to several programmes within or
across universities.
Introduction of optimal admission rules is expected to alter the choice of

subjects by upper-secondary school students in such a way that they try to
better prepare themselves to graduate from programmes in the higher educa-
tion system. This altered choice is an indirect gain from a changed admission
system. Even when the entire di¤erence in graduation rates between di¤erent
groups of students is due to self-selection, optimal admission of students is
a valid policy rule. In this case, whilst a direct gain of increased graduation
rates exists, no indirect gain appears from applying a policy rule maximising
graduation rates.
However, most empirical results show that only a minor part of the es-

timated economic gain of one more year of education is due to self-selection
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(see, e.g. the survey by Card (1999)). To the extent that self-selection
also plays a minor role in the impact of upper-secondary school subjects for
understanding the content of programmes in the higher education system,
there are derived gains from admission policies that maximise graduation
rates. These derived gains have the potential to result in entire cohorts of
upper-secondary school students being more likely to graduate with a higher
education degree.
The theory developed in this paper and the application of the theory in

the empirical analysis demonstrates how to increase graduation rates and
further the smooth transition of students through the higher educational
system. The application of an optimal admission policy for higher education
is thus a means of increasing the skill level of the work force, which is crucial
for labour market outcomes and economic growth.

Acknowledgements
Thanks for comments from the editor, two referees, Atila Abdulkadiroglu,

John Kennes, Dean Lillard, Rune Vejlin and seminar participants at the
Copenhagen Business School, the conference of the Danish Economic So-
ciety, the Barcelona workshop of the European Network for Research on
Matching Practices in Education and Early Labour Markets, the Congress
of the European Economic Association in Gothenburg, and the International
Workshop on Applied Economics of Education in Catanzaro.

35



Literature
Abdulkadiroglu, A. and T. Sönmez, 1998. Random serial dictatorship

and the core from random endowments in house allocation problems. Econo-
metrica, vol. 66 (3), 689-701.
Albæk, K., 2009. The Danish apprenticeship system, 1931-2002: the role

of subsidies and institutions. Applied Economics Quarterly, vol. 55(1), 39-60.
Altonji, J.G., E. Blom and C. Meghir, 2012. Heterogeneity in human cap-

ital investments, high school curriculum, college major, and careers. NBER
Working Paper no. 17985.
Björklund, A. and R. Mo¢ tt, 1987. The estimation of wage gains and

welfare gains in self-selection models. Review of Economics and Statistics,
vol. 69(2), 42-49.
Bound, J., M.F. Lovenheim and S. Turner, 2010. Why have college com-

pletion rates declined? An Analysis of Changing Student Preparation and
Collegiate Resources. American Economic Journal: Applied Economics, vol.
2(3), 129-157.
Bound, J., and S. Turner, 2011. Dropouts and diplomas: the divergence in

Collegiate outcomes. In: Hanushek, Machin and Woessmann (Eds.), Hand-
book of the Economics of Education, vol. 4. Elsevier, Amsterdam, pp.
573-613.
Bowen, W.G., M.M. Chingos and M.S. McPherson, 2009. Crossing the

�nish line. Completing college at America�s public universities. Princeton
University Press, Princeton.
Card, D., 1999. The causal e¤ect of education on earnings. In: Ashen-

felter and Card (Eds.), Handbook of Labour Economics, vol. 3A. Elsevier,
Amsterdam, pp. 1801-63.
Epple D., R. Romano, and H. Sieg. 2006. Admission, tuition, and �nan-

cial aid policies in the market for higher education. Econometrica, vol. 74
(4): 885�928.
Fu, C. 2014. Equilibrium tuition, applications, admissions, and enroll-

ment in the college market. Journal of Political Economy, vol. 122 (2),
225-281.
Gale, D. and L.S. Shapley. 1962. College Admissions and the Stability

of Marriage. The American Mathematical Monthly, vol. 69 (1), 9-15.
Gary-Bobo, R. J., and A. Trannoy. 2008. E¢ cient Tuition Fees and

Examinations. Journal of the European Economic Association vol. 6 (6),
1211�1243.

36



Heckman, J.J. 1979. Sample Selection Bias as a Speci�cation Error,
Econometrica, vol. 47(1), 153-161.
Heckman, J.J., R.J. LaLonde and J.A. Smith, 1999. The economics and

econometrics of active labor market programs. In: O. Ashenfelter and D.
Card (Eds.), Handbook of Labor Economics, vol. 3A. Elsevier, Amsterdam,
pp. 1865-2097.
Joensen, J.S. and H.S. Nielsen. 2009. Is There a Causal E¤ect of High

School Math on Labor Market Outcomes? Journal of Human Resources. vol.
44(1), 171-198.
Maddala, G.S. 1983. Limited-Dependent and Qualitative Variables in

Econometrics. Econometric Society Monographs. Cambridge: Cambridge
University Press.
Manski, C.F. and D.A. Wise, 1983. College Choice in America. Harvard

University Press, Cambridge.
Roth, A.E. and M.A.O. Sotomayor, 1990. Two-sided matching. A study

in game-theoretic modeling and analysis. Econometric Society Monographs
no. 18. Cambridge University Press, Cambridge.
Rothstein, J.M., 2004. College performance predictions and the SAT.

Journal of Econometrics, vol. 121(1-2), 297-317.
Stinebrickner, R. and T. Stinebrickner, 2014. Academic performance and

college dropout: Using longitudinal expectations data to estimate a learning
model. Journal of Labor Economics, vol. 32(3), 601-644.
Svensson, L.-G., 1999. Strategy-proof allocation of indivisible goods. So-

cial Choice and Welfare, vol. 16, 557-567.
Tinto, V., 1993. Leaving College. 2nd ed. University of Chicago Press,

Chicago.
Wand, M.P. and M.C. Jones, 1995. Kernel Smoothing. Chapman and

Hall, London.

37



38 
 

Group i

Grade Point Average

Optimal

Not optimal

Group j

Common threshold

Fig. 1. Transition from admission system with common 
threshold to optimal admission system

Graduation probability

 



39 
 

 

 

 

 

 

 

 



40 
 

 

 

 

 



41 
 

 

 

 

 

 

  



42 
 

Table 1. Sample statistics for three branches of secondary school and statistics for optimal admission.  
                     

Sample statistics  Common threshold1) Threshold    Graduation change3)

   Share  Graduation rate    Grad. rate Slope    change2)  Points  Relative 

Programme: 
Law 
    Math  0.386  0.693  (0.011)  0.649  0.090  ‐0.460 
    Language  0.329  0.616  (0.012)  0.586  0.040  0.539 
    Other   0.285  0.450  (0.013) 

    Total  1.000  0.598  (0.007)  0.062  0.104 
Economics 
    Math  0.685  0.466  (0.012)  0.284  0.229  ‐0.221 
    Language  0.042  0.308  (0.042)  0.221  0.113  0.055 
    Other   0.273  0.252  (0.016)  0.131  0.157  0.613 
    Total  1.000  0.401  (0.009)  0.007  0.018 
Pol. Science 
    Math  0.455  0.735  (0.017) 

    Language  0.299  0.766  (0.020) 

    Other   0.246  0.460  (0.026) 

    Total  1.000  0.677  (0.012)  0.068  0.100 
Psychology 
    Math  0.241  0.695  (0.027) 

    Language  0.287  0.621  (0.026) 

    Other   0.472  0.452  (0.021) 

    Total  1.000  0.559  (0.014)                  0.136  0.243 
Total 
    Math  0.457  0.610  (0.007) 

    Language  0.245  0.629  (0.010) 

    Other   0.298  0.404  (0.009) 

    Total  1.000  0.553  (0.005)  0.057  0.103 

Note: Standard errors in parenthesis. Admission to the University of Copenhagen Summer 1984 ‐ 
Summer 2001. Total number of admitted students was 10418 distributed on 47.2% in law, 26.3% in 
economics, 14.7% in political science and 11.8% in psychology. Graduation with a bachelor degree 
within four years of study. 1) Graduation probabilities and slopes are measured at the common 
threshold. 2)  Changes in admission thresholds as a consequence of optimal admission. 3) Percentage 
points increase in graduation rate as a consequence of optimal admission and increase relative to 
previous level of graduation.      
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