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Comparing Regression Coefficients Between Models using L ogit and Probit:

A New Method

Introduction

Nonlinear probability models such as binary logitlgprobit models are widely used in
guantitative sociological research. One of theistrtmmmon applications is to estimate the
effect of a particular variable of interest on adsy outcome when potentially confounding
variables are controlled. Interest in such genomérue” coefficients has a long history in
the social sciences and is usually associated thi¢h elaboration procedure in cross-
tabulation suggested by Lazarsfeld (1955, 1958;dkkrand Lazarsfeld 1950; cf. Simon
1954 for partial product moment correlations). Néweless, controlled logit or probit
coefficients do not have the same straightforwaterpretation as controlled coefficients in
linear regression. In fact, comparing uncontrobed controlled coefficients across nested
logit models is not directly feasible, but this eapps to have gone unrecognized in much
applied social research, despite an early statewfetite problem by Winship and Mare
(1984).

In this paper we offer a solution. We develop ahuodtthat allows unbiased
comparisons of logit or probit coefficients of tkame variablexj across nested models
successively including control variabled. (The method decomposes the difference in the
logit or probit coefficient ok between a model excludizgand a model including into a
part attributable to confounding (i.e., the partdméed or explained by) and a part
attributable to rescaling of the coefficienbofOur method is general because it extends all
the decomposition features of linear models totlagd probit models. In contrast to the

method ofy-standardization (Winship and Mare 1984; cf. Lorg917), our method is an



analytical solution and it does not depend on tieglipted index of the logit or the probit.

Moreover, contrary to popular belief, we prove thaerage partial effects (as defined by
Wooldridge 2002) can be highly sensitive to rescpliHowever, casting average partial
effects in the framework developed in this papdvesthe problem created by rescaling
and thereby provides researchers with a more irdtple effect measure than

conventional logit or probit coefficients.

We focus on models for binary outcomes, in paréicthe logit model, but
our approach applies equally to other nonlinear efeofbr nominal or ordinal outcomes.
We proceed as follows. First, we present the probté comparing coefficients across
nested logit or probit models. Second, we formdkgcribe the rescaling issue and show
how to assess the relative magnitude of confouncitagive to rescaling. We also develop
test statistics that enable formal tests of condiiumand rescaling. Third, we show that our
method is preferred ovgrstandardization and average partial effects. owe apply our
method to simulated data and to data from the Nati&ducational Longitudinal Survey.

We conclude with a discussion of the wider consaqges for current sociological research.

Comparing coefficients across logit and probit models

In linear regression, the concept of controlling possible confounding variables is well
understood and has great practical value. Reseaarofften want to assess thfect of a
particular variable on some dependent variablehehe or more confounding variables. A
general consequence of this feature is that reselrccan compare controlled (partial)
coefficients with uncontrolled (gross) coefficigntisat is, compare coefficients across same
sample nested models. For example, a researchat wagnt to assess how much the effect

of years of education on log annual income changlesn holding constant academic



ability and gender. In this case the researcheddvoompare the uncontrolled coefficient
for years of education with its counterpart conitngl for ability and gender. The difference
between the two coefficients reflects the degreehich the impact of years of education is
mediated or confounded by ability and gentdtis kind of design is straightforward

within the OLS modeling framework and is probabheaf the most widespread practices
in empirical social research (Clogg, Petkova, aadtbu 1995).

In logit and probit models, however, uncontrolbatt controlled coefficients
can differ not only because of confounding but ddsoause of a rescaling of the model. In
this case the size of the estimated coefficierthefvariable of interest depends on the error
variance of the model and, consequently, on whittterovariables are in the model.
Including a control variablez, in a logit or probit model will alter the coefignt of x
whether or notz is correlated withx, because, iz explains any of the variation in the
dependent variable, its inclusion will reduce th®evariance of the model. Consequently,
logit or probit coefficients from different nestetbdels are not measured on the same scale
and are therefore not directly comparable. This epnabout because, in nonlinear
probability models, the error variance is not inelegiently identified and is fixed at a given
value (Cramer 2003:22)This identification restriction is well known i literature on
limited dependent variable models (Yatchew andi¢k@s 1985, Long 1997; Powers and
Xie 2000; Cramer 2003; Winship and Mare 1984; M&d®83; Amemiya 1975; Agresti

2002), but the consequences of rescaling for ttegpretation of logit or probit coefficients

! We use ‘confounding’ as a general term to covecades in which additional variables, z, are dateel

with the original explanatory variable, x, and addtect the dependent variable, y. This includesesavhere

the additional variables are believed to ‘medidte’ original relationship x and y. In terms of patialyses,

the part of the x-y relationship mediated or confibed by z is the indirect effect.

% This identification restriction holds for all mdden which the error variance is a direct functifrthe mean
(McCullagh and Nelder 1989). In the linear regressimodel, the mean and error variance are modeled
independently.



are far from fully recognized in applied socialeasch (for similar statements, see Allison
1999, Hoetker 2004; 2007, Williams 2009, or Mood @0

One very important reason why we should be concdewi¢h this problem
arises when we have a policy varialdewhich we believe will mediate the relationship
betweenx and a binary outcomg, Typically, we might first use a logit model tagressy
onx to gauge the magnitude of the relationship, aed the might add as a control to find
out how much of the relationship is mediated xidhis would seem to tell us how much
we could affect thew-y relationship by manipulating But, as we show below, in general
such a strategy will tend to underestimate the atadj role ofz, increasing the likelihood
of our concluding, incorrectly, that changiagvould have little or no impact on they
relationship.

Known solutions to the problem of comparing coedints across nested logit
or probit models are to usestandardization (Winship and Mare 1984) or to il
average partial effects (Wooldridge 2002). Howews, we show, these solutions are
insufficient for dealing with the problem of compay logit or probit coefficients across

models in a satisfactory manner.

Separ ating confounding and rescaling

In this section, to set the notation, we first faity show how coefficient rescaling operates
in the logistic regression modelfter this exposition, we introduce a novel mettthelt
decomposes the change in logit coefficients acressted models into a confounding

component and a rescaling component. We also deailalytical standard errors and t-

% The results hold equally for probit models.



statistics for each component, and point out araognized similarity with a test statistic

provided in Clogg, Petkova, and Haritou (1995)lfioear models.

Latent linear formulation of a logit model

Let y* be a continuous latent variable representing tbhegnsity of occurrence of some

sociologically interesting response variable (eegmpleting a particular level of education,
committing a crime, or experiencing a divorce). kdéte an explanatory variable of interest
(e.g., parental education, parental criminal betrawdr one’s own educational attainment),
and letz be a set of control variables (e.g., academidtabihental well being, or number

of children). In this exposition we assume thaindz will be correlated, thereby allowing

for zto confound the-y* relationship. Omitting individual subscripts acenteringx andz

on their respective means (i.e., omitting the epts), we follow the notation for linear
models in Clogg, Petkova, and Haritou (1995; clal@&k 1979) and specify two latent

variable models:
HR: y = ﬂyxx + € ’ Sd (e): JR (1)

He: Yy = BuoX+Bypz+ v, sd(vFo, (2)
Hr and H denote the reduced and full model respectively wadake H to be the true
model? However, an identification problem arises becausecannot observg*: instead
we observe, a dichotomized version of the latent propengitghsthat:

y=1 ify>r
y=0 otherwise

©)

* Following Clogg, Petkova, and Haritou (1995) we tise term “full model” to denote the model inclugli

controls, while we denote the model without corgtrible “reduced model”. Since both models canndtuee

simultaneously, we hold the full model to be theuét model, i.e., the model on which we will basg o
inferences.



wherer is a threshold, normally set to z&r@he expected outcome of this binary indicator
is the probability of choosing =1, i.e., E(y=1) = Pr(y= 1). Assuming that the error terms
in (1) and (2) follow a logistic distribution we rcavrite the two latent models in the form

y* = Bx+ e= B x+ o0 uwhere g is a scale parameter and wherés a standard logistic

random variable with mean 0 and standard deviatioh/3 (Cramer 2003:22; Long
1997:119) Using this additional notation and setting0, we obtain the following two

logit models, corresponding to (1) and (2) above:

Logit .
Hg™

exp[[”vx xj
Pry=1)=Py*> 0 = P{u<—'[))yx XJ: Ir (4)
Or ﬂyx
1+ex ij

U Y -
=7 exp(beX) = logit(Pr(y = 1))=h, x= .

and in a similar way we obtain the full model

HI';ogit .
explb,..x+ b, ,. z
Pr(y=1)= p( y@” Sy ) -
1+ exp(bymx+ byﬂxz)
= logit(Pr(y =1))=h,,x+ b, z= By t Byex :
O: O

where the residual standard deviatioas,and o, , are defined in Models gdand H. We

can immediately see that the coefficients fofrom the two modelsp,, and b,,,, are

influenced not only by whether other variables iauded in the model but also by the

magnitude of the residual variance.

® Whenever the threshold constant is nonzeroab#rbed in the intercept of the logit model. Hoereit

does not affect the effect estimates. Thereforesete¢he threshold to zero in this paper.

® Had we assumedto be a standard normal random variable with nfeand standard deviation 1, we would
have obtained the probit.



Two sources of change: Confounding and rescaling

From the logit models in (4) and (5) we see thatduse we cannot estimate the variance
of y* (i.e., we only observg as in (3)), a restriction is necessary for idgiid the model.
This means that we cannot estimate the regresseffigents ofx of the underlying

models in (1) and (2), but only

b, =

yX

B
. b, ="2. 6
O_R yx& O_F ( )

In words, the estimated logit coefficients are égqodhe underlying coefficients divided by
the residual standard deviation. Therefore, coliigpla variable of interestx( for a
confounding variablezj that explains variation in the dependent varidig)ewill alter the
coefficient of interest as a result of both confoimg and rescaling. Confounding occurs
wheneverx andz are correlateénd zhas an independent effect ghin the full model.
Rescaling occurs because the model without theocoiding variablez, has a different

residual standard deviation than the model thdudes the confounding variabler{ as
opposed too,. ). Because we explain more residual variation & ftl model than in the

reduced model, it holds that; > o.. The logit coefficients ok are therefore measured on

different scaleg.

" Rescaling will also affect the odds-ratio, i.de texponentiated logit coefficient. Because of siraple

relation between log-odds-ratios and odds-ratibis, impact is straightforward to show. By oddseaatie

mean the relative probability or odds for the evahinterest between two different individuals,. i@ Y is a

binary dependent variable aréndx’ are two different values of an independent vaeathien the odds-ratio

s defined as O -tIX=X RYS1L X X J0g then  the log-odds-ratio  becomes
1-P(Y=1| X=X/ 1- P(Y=1| X= X)

|n(P(Y:1| X= %—P(Yzll = X))—m( RY=1] X= %_ P(Y= 1] X= x')’ which is equal tog, / o

if the probability ofY follows a logistic distribution, wherg* = a + Sx+oe with y* being a continuously




The solution
When employing the logit model, we are interestedthe difference between the

underlying coefficients 8, and 3, in (1) and (2), because this difference is theltesf

confounding only (and not rescaling). However, lbseawe only observe the coefficients

in (6) we cannot distinguish between changeb jncompared td,

\x due to rescaling and

to confounding:

By B

O, O

b,-b

yX 4

7 IByx_lB yKlz (7)

Moreover, researchers making the naive comparis@n)iwill generally underestimate the

role played by confounding, becaugg, >o.. In certain circumstances, rescaling may

counteract confounding such that the last diffeeeimc(7) is zero, which may lead to the
(incorrect) impression thatdoes not mediate or confound the effect.dResearchers may
also incorrectly report a suppression effect, whschot a result of confounding (i.e.and
z are uncorrelated), but only a result of rescafireg, z has an independent effectynThe
problem stated in (7) may be known by most socistegspecializing in quantitative
methods, though the sociological literature is egplwith examples in which the naive
comparison is made and interpreted as though leatetd pure confounding. Moreover,
although tentative solutions exist, they have nibtisked into text books on the topic or into
applied research.

Now we present a method that overcomes the croskeimcoefficient
comparability problem. LetZz be a set ofx-residualizedzvariables such that their

correlation withx is zero, i.e.r,, = 0. In other wordsz is the residual from a regression of

distributed latent variables being a type | extreme valued distributed residaain, ando being a scale
parameter.
% See the Example section.



zonx. CenteringZ on its mean (i.e., omitting the intercept), wecsiyea new latent linear

model:
He: Y = Bax+Byz+ k ,sdkFo’ (8)
Compared to the full latent linear model in (2),iethincludes the control variable®,(the

model in (8) includes instead theresidualized counterpartg,. Because models (1), (2),

and (8) are linear we can prove the two followingaities:

By = By 9)

0. =0, (10)
In other words, the coefficient afin H, is the same as ik, and the residual standard
deviation of H_ equals the residual standard deviationHyf. To show (9) formally, we

again assume that z, and Z are mean-centered, and for simplicity we assan@ebe a

scalar. We use the specification of Models (1) @)dsuch that

E(xy*) and Z=1z- E(X

E(x) E( ¥

NAP

X .

S—"

From the basic principles of OLS, we have

_E(Z)Ey)- "y € Xy

S GEGET I

where the second last equality is true, becausbave E(x"z) =0 by construction. Thus

we have proved (9), and this leads immediatelyéoproof of (10):

10



yxE2 yﬂx

_ E(x
- ﬂyxn yﬂ){ E ( X2 }

E(x2)

where BZX:TXZ)' The relationk =v O y, x, z implies thato. =g, . Thus we have

proved (10). Given the equality in (10), we sed tHa in (8) is a re-parameterization of

H- in (2), i.e., they reflect the same latent linesdel.

We now rewrite the latent linear model in (8) irdocorresponding logit
model. We employ the same strategy defined by(43),and (5) and obtain the following

model:

ﬁyfﬁ )6' ﬁ{ﬂx,..

Logit* . H — — ~y—
Heo" - logit(Pr(y = 1))= b, x+ by, 7= - -

2 (11)

Similar to the linear case, this model is a re-pat@rization ofH*%", i.e., the two models

have the same fit to the data. We may now explatequalities in (9) and (10) and the
specifications of the logit models to overcome ¢benparison issue encountered in (7). In
other words, we can make an unbiasethparison of coefficients of without and with a
confounding variablez, in the model. We propose three measures of cositi change
that hold rescaling constant (i.e., that measumgfoemding net of rescaling). The first

measure is difference measure

b =Poa B By B BB o (12a)

o. 0. O O o8

11



where the first equality is due to the definitiong6) and the second is due to (9) and (10).

This result tells us that the difference betweenttho logit coefficients ok in H**" and

H%" stated in (12a) measures the impact of confounutinrelation to the same amount of

scaling, here the residual standard deviation efftii model. The difference in (12a) is a
logit coefficient and like normal logit coefficientit is only identified up to scale. It
measures thehangein the coefficient ok attributable to confounding due to the inclusion
of z, conditional on the full model holding true. Sineee usually prefer basing our
inference on the full model rather than the reduoedel (see Clogg, Petkova, and Haritou
1995), this is an important result.

The second measure isratio measurewhich is a scale free measure of

confounding net of coefficient rescaling:

Ba Py
bwa: g _ o zlgwuz: /gyx

byxﬁ &_ﬂiwﬂz 'Byﬂz 'Byﬁz'

o O

(12b)

In other words, the ratio between the two logit fioients of x in H*®" and H "

measures the impact of confounding (i.e., the irhpat of the rescaling). In fact, in (12b)
the scale parameter disappears, making it a soadenfieasure of coefficient change. A
third measure, which we believe has considerabdetioal relevance, is the percentage

change in the coefficients that is attributabledafounding, net of scaling:

b,;—b - _
O 0 1 0006= — T2 x 1000 Pr2 " Prery 10006 Fr Pz 100 (12c)
Xz 73/1(& X1z >
O

Whether a researcher prefers the scale dependéredce measure stated in (12a) or the

scale free ratio measure and percentage changairaedated in (12b) and (12c) may not

12



simply be a matter of choice but should depend hen dbjective of the research. The
measures have different interpretations. The diffee measure in (12a) has the same
properties as a normal logit coefficient and canrbated as such: researchers interested in
the coefficients of the logit model should therefadopt the difference measure. The ratio
and percentage change measures have a differergrgtiation, because they are concerned
with the regression coefficients in the latent modée ratio in (12b) and the percentage
change in (12c) measure change in the underlyimgapaffects on the latent propensity
rather than in the logit coefficients. We therefemcourage researchers interested in the
underlying partial effects to use these scalerineasures.

If, in addition, we want to know the magnitudere$caling net of the impact

of confounding, we need to know the relat%ﬁq, i.e., the ratio between the error standard
O

deviations in the reduced and full model. Giveng®l (10), we find that

By By
b o o. G,
= R — "R _-_"F (13)
b Ba Px 0

o. O

In other words, the ratio between the two obsem@efficients ofx in HX?" and H*"

measures the impact of rescaling, net of confoundBecauseo, >o., we know that

b
— < 1. From (12) and (13) we have the ratio decomjomsdf the observed change in the
yxX[(Zz

coefficient forx across nested models:

by _ By bbyx | (14a)

yx[z yxXdz yKi z
where the first term on the right hand side caguw@nfounding and the second captures

rescaling. Similarly we derive the additive decosipon:

13



b ,-b, =—-—"=—2~ -b,. ]+ b, —b.l, 14b
yX yXk O_R O_F O_R O_F O_F O_F yX y[z] [ yXiz y!Zl]z ( )

where the first term on the right hand side equalkcaling and the second captures

confounding. Notice that the component induceddsgaling is equal to

_u P

byx_by}& Or O¢
and thus captures the effect, on the logit coeffits, of the change in the residual standard
deviation, holding constant the underlying coeéiti

Rather than looking at the influence of confousderterms of the rescaling
after adding controls (i.e., using the standardiaten from the full model), a researcher
may want to evaluate this influence in terms of sigaling before adding controls (i.e.,

using the standard deviation from the reduced mo@smbining the coefficients of in

Models (4), (5), and (11), we obtain:

Py Pz [Byce Py Bz | By Prca
o, 0./ o. O,

o- | o= 04
From these equations we obtain the influence ofarording conditional on the reduced

model holding true:

:Byx - lBy)CIZ

Or

(15)

However, compared to the difference in (12a), taedard error of the difference in (15) is
more difficult to compute. To test the differenog12a), we calculate the standard error for

the difference between the observed regressiorficeets, b, —b, .. This calculation is

straightforward because both coefficients are asgtigally normal (see below). For (15),

ﬁ yxz

however, matters are more difficult because we hawebtain—— as a quotient between
R

14



several observed quantities. We therefore recommeimg) (12a) rather than (15) to assess
the influence of confounding. And, to reiteratepusing (12) rather than (15) we are basing

our inferences on the true model.

Two formal tests
We have shown how rescaling operates in the logilehand developed a simple way of
decomposing the change in logit coefficients ofsheme variable into one part attributable
to confounding and another part attributable tacaksg. However, we also develop two
formal statistical tests that enable researcheessess whether the change in a coefficient
attributable to confounding is statistically sigo#int and whether rescaling distorts the
results to any statistically significant degree.

For generalized linear models and thus also fait lngdels, Clogg, Petkova,
and Haritou (1995) show that the standard errahefdifference between an uncontrolled

(b,,) and a controlledl{ ,,) logit coefficient is

SE(h, - b= SE bl H’+ SER H'-2 Cavp, )
= [SE(B,| H)?+ SE | HY( X WX SEN W-2 SEH

(16)

This somewhat complex expression takes into accihentescaling of the model, because

it involves the variance db, conditional on the full model, #holding true (i being the
reduced model). However, while (16) takes into aotdhe rescaling of the standard error
of the difference, it neglects the fact that th#edencep,, - b,,,, conflates confounding

and rescaling (see (7)). Thus (16) is suitable doefficient comparisons that mix
confounding and rescaling, but not for comparisthias separate the two sources of change
(see Clogg et al 1995: 1286 Table 5 for an apptinatf their approach to comparing logit

coefficients that does not differentiate the twarses of difference). And since separating

15



confounding and rescaling is precisely our aim,dgeve the expression for the standard
error of the difference between the standardardizednet of rescaling) coefficients. This

is given by

ﬂyxﬁ - ﬁy)ﬂz
g,

F

SEa- b0 = S RED R

This quantity is easily obtained with standardistizgl software. We can use (17) to test
the hypothesis of whether change in the logit coefit attributable to confounding, net of
rescaling, is statistically significant via thettetatistic, Z, (where the subscrif@ denotes
confounding) which, in large samples, will be nolijndistributed:
Z, = byx.z B byx.z
JSE,,.)* + SEb,,;) - 2Coub,,, b,,;)

(18)]

In other words, the statistic enables a directdé#ite change in the logit coefficients that is
attributable to confounding, net of rescaling.

In passing, we note that, whenewers a single variable (and not a set of
variables), the Z-statistic for the difference 124) equals the Z-statistic for the effectzof

ony as defined in (5):

b,
Zc(byxcz_ byﬂ) =z byz) =¢ZQ) (19)

So, in the three-variable scenarig X, andz) we do not need to use (18): instead we
evaluate the Z-statistic for the effectobny in (5). This property is identical to the one
presented by Clogg et al. (1995) for linear regogssoefficients. We prove (19) in the

Appendix.

® Notice thatCo\ B, .+ B,-) is not trivial to derive conditional on the fulladel holding true (under §i We

use the method implemented in Stata comnsardtwhich returns the standard error of the differefiee,
the denominator in (18)}3uestis based on the derivations of a robust sandwipbk-gstimator, which stacks
the equations and weighs the contributions fronth esiation (see White 1982). Code and sample data a
available from the authors.

16



Researchers may also want to know whether coefficiescaling is

significant or whether they can reasonably ign¢serifluence. Because, > o, we test

the one-sided hypothesis:

= Py _ By _
HO'bxy_bxyCz': ?—a—@ Or=0;
R F

H :0,>0;

with the following test statistic, which will be moally distributed in large samples:

7 byx.i - byx

® JSEb,)? + SEb,;)” - 2Coub,,.b,,;)

(20)

where subscripb denotes scaling.

Comparing our method with other known solutions

Why should researchers prefer our method to therratives currently available in
statistical packages? We argue that our methdadhigler and more precise. Furthermoye,

standardization, which was suggested by WinshipMace (1984; cf. Long 1997; Mood
2010) as a possible solution to the comparisonlenob created by rescaling, is not as
general or as tractable a method as ours. We htso why average partial effects (APES)
as defined in Wooldridge (2002) cannot be useddioect comparisons of coefficients

across models without and with confounding conteoiables. However, combining APEs

with the method developed in this paper provideseaechers with easily interpretable

effect decompositions.

17



y-standardization
For making within sample comparisons of logit caééihts ofx across models without and

with control variablesz, Winship and Mare (1984) suggesstandardization® The basic
idea is to estimate the standard deviation of tleelipted latent outcomey , for different
nested models and then, for each model, the caeffiof x is divided by the estimated
latent standard deviationSD(y). The calculated coefficients are thusstandardized
because they compensate for the rescaling of tla-standardized” coefficients. The
standard deviation ofy’ is calculated using the formula developed by Mekgl and

Zavoina (1975), here for the logit model:

SD(¥) =/ VAR'Y) =/ VAR X)o+ VA(R)UF\/ VAFYH)%. 21)

The equation in (21) decomposes the variancg ofnto a part attributable to the linear
prediction (XTB) in the logit index and a part attributable to thed variance of uwhich
we previously defined as a standard logistic rand@mable with mean 0 and standard
deviation 77/~+/3. The y-standardized logit coefficient of is thus b*" = b/ SO(y) . But,

contrary to widespread belief, such coefficients mot always comparable across models.

To see this, we write thestandardized counterparts to the coefficientsnéefiin (6) as

de: byx - ﬁyx .
T SD(Y)  grx SI(Y)

== P (22)
SRy o< SHTY

where SD;( V) and SD. () are the standard deviations of the predicted tatettome in

the reduced and full model, respectivelyyd$tandardization facilitates comparisons that

are unaffected by the rescaling of the model, therfollowing condition must hold:

19 Another solution is fully standardized coefficierin which x is standardized as well (cf. Long 1997
However, since x is measured on the same scalssaarodels and since we are interested in comp#rang
effects of x, we discuss simple y-standardizatiothis paper.

18



0. %SDy(¥) = 7o x SR(Y) = EB:;%;:%. (23)

In words, the change in the error standard dewviatioetween the reduced and full model
should be offset by the opposite change in thedst@hdeviation of the predictddtent
outcome. Whenever (23) holds, we can compgstandardized coefficients across
models™* However, we now provide a counter-example in whighshow that (23) does
not always hold. The example is a simulation stahy it illustrates that the difficulty with
y-standardization derives from its reliance on tlagiance of thepredictedlogit index.
Whenever this prediction is skewed, the varianca gor measure of dispersion, and
standardization consequently fails as a methodcéonparing coefficients across nested
models.

In the simulation study we draw 2,000 independdigeovations. Lek be a
continuous normally distributed random variabled &tz be the exponent of a continuous
normally distributed random variable. The sampleradation betweerx and z is by

construction close to zero (in this sample=-0.0065). We generatg such that

y* =X+ 22+ 2e,
where e is a standard logistic random variable.théa create, a dichotomization of*,
such that/* is split at the median of the distribution (eriegr50 percent in each category).
We estimate two logit models withas the dependent variable. The first model indugle
while the second includes bothand z. Becausex and z are uncorrelated, they cannot
confound each other in the second model. Thuschhage in the coefficient offrom the

first to the second model is a result of rescalimal,confounding.

™ Given that the method proposed in this paper salle scaling problem, we are able to test whe@®y
holds. Taking the ratio between the two logit cméghts in (22) should, if (23) holds, equal théaan (12b).

In other words, researchers can use our method hsseline comparison of the performance of y-
standardization.
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We report logit coefficients angistandardized logit coefficients in Tablé? .
A researcher unaware of the rescaling of the loggfficients ofx from Model 1 to Model

2 would erroneously conclude thatis a suppressor of the effect nfon y, because

b, <By,. b is about 30 percent larger thBa . However, sinca andz are uncorrelated,
the inequality only comes about as result of aakesg of the model. Ify-standardization
works satisfactorily, i.e., if the condition in (2Bolds, then we would expect it that the
change in the logit coefficients rfbetween Models 1 and 2 is spurious. Vstandardized
coefficients in the table, however, tell a differstory. Here the-standardized coefficient

of x in Model 1 is larger than the corresponding coedfit in Model 2, thereby “over-

sdY sdY
offsetting” the rescaling?¥* is around 15 percent larger thaf*.

In this casey-standardization would lead to the conclusion oé@uction in
the effect ofx once we control foz. This clearly contradicts a naive interpretatidrihe
logit coefficients, which shows an increase of ¢ffiect ofx. But both are wrong, because
the true change is nil. We have thus shown thstandardization is not a foolproof

method: it relies on the predicted logit index, @nday lead to incorrect conclusions.

-- TABLE 1 HERE --

Marginal effects and average partial effects

Sociologists are increasingly becoming aware ofsitede identification issue in logit and
probit models (see, e.g., Mood 2010). Economists) have long recognized the problem,
are usually not interested in logit or probit coméints, but prefer marginal effects (see

Cramer 2003; Wooldridge 2002) or average parti@ots, APEs (Wooldridge 2002: 22-4).

12 Calculated wittSpostfor Stata (Long and Freese 2005).
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Effects measured on the probability scale are tintji both for researchers and policy-
makers. Moreover, even though predicted probadsliire nonlinear and depend on other
variables in the model, they are allegedly “scaleet, thereby escaping the scale
identification issue. We agree that reporting maabeffects and predicted probabilities is a
step forward in making results produced by logitpoobit models more interpretable.
Nevertheless, both marginal and average partiadcefimeasures suffer from some
deficiencies that render them unsuitable for comngacoefficients across nested models.

Casting APEs in our framework, however, solvespitudlem.

Defining marginal effects and average partial effects
In logit and probit models, the marginal effect, Mi x is the derivative of the predicted

probability with respect t&, given by (whernx is continuou¥’ and differentiable):

o ) ) ) N1
P pa-pp= pa- pL =B g, (24)
X o o
where p=Pr(y=1|x) is the predicted probability givem and bzﬁ is the logit
o

coefficient ofx. The ME ofx is evaluated at some fixed values of the othetaggiory

variables in the model, typically their means. Bus implies that whenever we include
control variables in a model we change the setluérovariables at whose mean the ME is
evaluated, so introducing indeterminacy into cnogsiel comparisons. We therefore ignore

MEs in the following discussions, and rather foonghe more general APE.

3 Whenever x is discrete, the ME is the differenca(sexpected probabilities for each discrete aatggin
this paper, we refer to the continuous case. Téeretie case follows directly from these derivations
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The APE ofx is the derivative of the predicted probability vitespect to
evaluated over the whole population. kdte continuous and differentiable; then we write

the APE ofx as:
134dp _ 18 pA-p)
i = L S . 25
NZ NZ B (25)

Thus the APE is a weighted average of the margiffatts over the sample. If the sample
is drawn randomly from the population, the APErastes the average marginal effeckof
in the populatiort? It is convenient, not least because it is a measar the probability
scale. However, there is a widespread belief thBE®# are insensitive to the scale
parameter. For example, Mood (2010) claims that \&fe suitable for comparisons across
same sample nested models. But, as we show inotlmeving section, this is not true,

because APEs change as a function of the scalmptaa

Offsetting rescaling

The APE, as defined in (25), is sensitive to twamilies: the variance of the binary
dependent variable conditional on the independantblesp(l— p), which is a function
of the predicted probability,p, and the scale parameter, which is defined as the
standard deviation of the underlying latent outcoomnditional on the independent
variables. Controlling for confounding variableslivchange both these quantities but in

offsetting directions, as is evident from (25). Hower, their ratio will not generally be

constant across different models. This means lteatatio

4 For discretec’s, see Bartus (2005).
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N 1-
1 Z Py pyxz)ﬂ

yx.z
APE(X | z) N 2 _ UF (26)
APE(x) 1 i Pyx pyx)
N i=1 R X
H ﬁyx.z
Will not equal unless
ﬂyx
N D NN (1-1
= O ist  Og

The ratio 0—%_ varies between 1 (whenis uncorrelated witly) and 0 (wherx has no
R

direct effect), while the ratio

— =1 i 2 (28)

is bounded between and 0 (for the same configurations of the relaibatweerx, z, and
y)-

Certainly there could be cases in which (27) wdubttd—that is, where the
change in the ratio of residual standard deviatac®ss two models exactly equals the
change in the variance of the predicted probadsit-but there is no reason to think it will

always hold. Furthermore, although we can obsehee ratio of the variances of the

predicted probabilities, we cannot obserg% , and so the rescaling of the APE is
R

unknown.
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Applying our method to APEs

Because APEs are sensitive to rescaling, we catretttly compare the uncontrolled APE
of x with the controlled counterpart (controlling frto obtain an estimate of the change in
the effect ofx on the underlying latent variable when we intralgonfounders. However,
we can apply the method developed in this papeAR&s, so solving the problem
encountered in (26) and (27). Calculating the ABEthe logit model involvingz, we

obtain the following

i 3 pyx&(l_ pysz)ﬂ
APE(X| ) _NZ o " By (29)
APE(x| 2 1 i Py~ Py 5 P ’

N & o v

Which follows because of (9) and (10) and becapgg = p,,,,. While (29) casts the

change in APEs in ratios as in (5b), we can eailywe the change in differences between

APEs:

APE(X| 9~ APE % x—%i Pl = Pucd(p g ). (30)

i=1 O
Note that (38) is not equal to the difference we uldo normally calculate,
namelyAPE(x) — APE(x | z).

To summarize, APEs cannot generally be used faordposing effects as in
linear models because one cannot compare the uobiedt APE with its controlled
counterpart. However, applying the method develapetthis paper to APEs produces the
same result as applying the method to logit coeffits (i.e., captures “pure” confounding,
net of any rescaling). For example, the ratio @) (@quals the ratio in (12b). The reason for
this is that our method holds constant both thealesy of the logit coefficients and the

rescaling of APEs. Applying our method to APEs gseh measure of the extent to which
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the effect ofx ony is mediated or confounded kyn the probability scale, which may be a

more interpretable effect measure than logit coieffits.

Examples

To illustrate the method of decomposing the chandegit coefficients into confounding
and rescaling, we now turn to two examples. Tha f§ a simulation study that illustrates
how naive comparisons of probit coefficients mai. fBhe second example is based on
data from the National Education Longitudinal Study1988 (NELS88)°> We decompose
the effect of parental income on the probabilitygodduating from high school, and we
expect that the effect of parental income will dezlwhen student achievements and

parental educational attainments are controlled al&e report the results in APEs.

Simulation study: Failing to detect change in ptalmefficients across models
We draw N = 2,000 independent observations.xe¢ a continuous normally distributed
random variable, and let andv be two Normally distributed random error terms. We
construct a confoundez, such that

Z= X+ 6.5y,
which gives a 0.135 correlation betweeandz. We construct the underlying outconyé,
such that

y*=2Xx + 2z + 8e.
The observed binary dependent variable a dichotomization of* around the median of

the distribution (ensuring 50 percent in each acate@fy). We report the estimates from

5 We use approximately 8,008 §rade students in 1988 who were re-interviewetioi@0, 1992, 1994, and

2000. We have relevant background information anfidrination on the educational careers of the stisden
For a full description of the variables used insteixample, see Curtin et al (2002). We do not comime
further on attrition, because we present the exaraplan illustration of how rescaling operates.
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three probit® models withy as dependent variable in Table 2. The first modeludesx,
the second model includes bothndz, and the third includesand thex-residualized, Z.

A straightforward comparison of the coefficienfsxan models 1 and 2 would
lead to the conclusion thatdoes not mediate, confound, or explain the efédéct ony.
However, becauseandz are correlated and becausbhas an independent effect pnwe
know thatz is a true confounder. Using the method proposed reveals this. Comparing
the coefficients ok in models 3 and 4 shows a marked reduction: 064254 = 0.221 or
46.5 percent using formula (12c). Moreover, becdahiseexample involves a singke we
may exploit the property that ttevalue for the coefficient af in model 2 equals théc-
value for the difference in the coefficientsxdbetween models 3 and 2 (see (19)). Its value
is 0.244/0.010= 24.9, which is much larger than the critical vabfel.96. We therefore
conclude that the effect @fis truly confounded by and that the reduction of the effectxof
is highly statistically significant. This examplistrates how naive comparisons may mask
true confounding in cases where confounding andatiesg) exactly offset each other.
Because our method decomposes the coefficient ehategconfounding and rescaling, we

are able to detect whether thy relationship is truly confounded lzy

-- TABLE 2 HERE --

Example based on NELS88
In this example we study how the effect of paremabme on high school graduation
changes when we control for student academic wlailid parental educational attainment.

We use NELS88 and our final sample consists of8st6dents. The dependent variable is

'8 We use probit models, because we use logit madléte next example. However, using either probit o
logit models returns near-identical results.
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a dichotomy indicating whether the student compldtiggh school (= 1) or not (= 0). The
explanatory variable of interest is a measure aflyamily income. Although the variable
is measured on an ordered scale with 15 categdoessimplicity we use it here as a
continuous variable. We include three control Va@lga: these are student academic ability
and the educational attainment of the mother antheffather:” We derive the ability
measure from test scores in four different subjetsg the scoring from a principal
component analysi€.We standardize both the family income variable tedthree control
variables to have mean zero and variance of ukiy.estimate five logistic models and
report the results in Table 3.

In M1 we find a positive logit coefficient of 0.936r the effect of family
income on high school completion. Controlling ftudent academic ability in M2 reduces
the effect to 0.754. A naive comparison would thuggest that academic ability mediates
100*(0.935-0.754)/0.935 = 19.4 percent of the effeic family income on high school
graduation. However, such a comparison conflate$ocmding and rescaling. To remedy
this deficiency, we use the estimate of family meoin M3, where we have included the
residualized student academic ability measure. &bgmate is 1.010 and is directly
comparable with the estimate in M2. Using our mdthee obtain a 100*(1.010-
0.754)/1.010 = 25.3 percent reduction due to camdmg, net of rescaling. Because we
only include a single control variable (academiditgp, we know that the test statistic for
academic ability in M2 equals the test statistic tfee difference in the effect of family

income in M3 and M2. Because we have good reasmrexpect that academic ability

" parental education is coded in seven, orderededéscategories. To keep the example simple, wedec
father’'s and mother’s education as continuous ¢ates, although a dummy-specification would hawegia
more precise picture of the relationship with tlepehdent variable.

18 These tests are in reading, mathematics, sciamcehistory. The variables are provided in the joube
version of NELS88. The eigenvalue decompositioreaéed one factor accounting for 78.1 percent of the
total variation in the four items.
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reduces the effect of family income on high schoompletion, we use a one-sided
hypothesis and thus a critical value of 1.64. WaiokZ: = 0.672/0.042= 15.84, and we
therefore conclude that academic ability mediates dffect of family income on high

school completion.

-- TABLE 3 HERE --

In Table 3 we also report estimates from two furibgistic models. M4 adds father’s and
mother’'s educational attainment and M5 includes ftaeily income residualized
counterparts of all three control variables. A eaigsearcher would compare the effect of
family income in M1 (0.935) and M4 (0.386), and gdpa reduction of 58.7 percent.
However, using our method we would compare theceffé family income in M5 (2.188)
and M4 (0.386). This suggests a substantially fargduction of 82.4 percent. Using the
formula in (18) we obtain &c of 18.88 and thereby conclude that the reduct®n i
statistically significant. Moreover, our method algrovides us with an estimate of how
much rescaling masks the change caused by confoyndising the decomposition

expressed in ratios in (14a):

byx - beCz X be
byx& by)Gz b yKiz
U

0.386_ 2.188 0.38!
0.935 0935 2.18
—— — [ ——

Naive Confounding Rescalin(

0
2.420= 5.66% 0.427.

While confounding reduces the effect by a factob.@f rescaling counteracts this reduction

with an increase of about 0.42% 2.3 times. In this case rescaling plays an itgmmrole
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in masking the true change due to confounding. Batprisingly, rescaling has a
statistically significant effect: using (20) retsraZs of 14.24, which is far larger than the
critical value of 1.64.

In the final part of this example we reproduce [&ad, but we replace the
logit estimates with APES.In M1 we observe that a standard deviation inaéagamily
income increases the probability of completing hksghool by 10.4 percent. Controlling for
student academic ability in M2 changes the effecBtl percent, a reduction of 22.7
percent. However, using the specification in M3ine$ a slightly different result, namely a
25.4 percent reduction. Using more decimals than dhes presented in Table 4, this
percentage reduction exactly equals the reductadecutated with the logit coefficients in
Table 3. In light of equation (29), this findingushat we would have expected. Moreover,
as noted in a previous section, APEs somewhat tofésealing. The naive comparison
using logit coefficients returned a 19.4 percemution, while the naive counterpart for
APEs returned a 22.7 percent reduction. The natweparison based on APEs is thus
closer to the true reduction (25.3 percent).

Turning to models M4 and M5 in Table 4, naively gamng the effect of
family income in M1 and M4 returns a 71.1 percextuction, while correctly comparing
the effect in M5 and M4 returns an 82.3 percenticédn. With sufficient decimals the
latter reduction exactly equals the one based enatit coefficients in Table 2. Moreover,
comparing the family income APE in M1 and M5 clgashows that APEs can be highly
sensitive to rescaling. Conditional on M1 holdinget we would estimate that a standard
deviation increase in family income would incredake probability of completing high

school by around 10 percent. However, conditiomaMa (and thus M5) holding true (the

9 We use the user-writtanargeffcommand in Stata to calculate the APEs (Bartu$R00
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model which, in this example, we would take as fitflemodel), the effect is around 17
percent. Although the results point in the samedtion, there is a substantial difference
between the effect sizes.

Similar to the decomposition of the naive ratio logit coefficients into

confounding and rescaling, we can report an APEiavpart:

APE(XY _ APE {72  APEX
APE(X| 2 APE X 7 APEK).
U

0.1043_ 0.1704 0.1043
0.0301 _0.0301 _ 0.1704

Naive Confounding  APE "rescaling”

3.465= 5.66% 0.612.

From the decomposition we see that the ratio measeonfounding equals the one found
with logit coefficients. However, the rescalingsimaller for APEs (0.612 — that is, closer to

unity) than for logit coefficients (0.427).

-- TABLE 4 HERE --

Conclusion

Winship and Mare (1984) noted that logit coeffie¢geare not directly comparable across
same sample nested models, because the logit fireeserror variance at an arbitrary
constant. While the consequences of this identiboarestriction for the binary logistic
model are well-known in the econometric literature;one has as yet solved the problem
that emerges when comparing logit coefficients s&noested models. This has led many
applied quantitative sociologists to believe thanfounding works the same way for the

binary logit or probit regression model as for imear regression model. In this paper we
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remedy the previous lack of attention to the udé$é consequences of rescaling for the
interpretation of sequentially controlled logit fft@ents by developing a method that
allows us to identify the separate effects of riassgaand confounding.

Our exposition and its illustration through thenslated example and the
analysis of NELS data lead us to five main poiriigst, naive comparisons of logit
coefficients across same sample nested modelsdsbeuhvoided. Such comparisons may
mask or underestimate the true change due to codiog. Second, using our method
resolves the problem, because it decomposes the maiefficient change into a part
attributable to confounding (of interest to reskars) and into a part attributable to
rescaling (of minor interest for researchers). @hour method provides easily calculated
test statistics that enable significance testsott bonfounding and rescaling. Fourth, APEs
can be highly sensitive to rescaling but, fifthplying our method to APEs overcomes
this problem.

Rescaling will always increase the apparent madaitf the coefficient of a
variablé® and this commonly counteracts the effect of thelusion of confounding
variables, which are most often expected to redhbeeeffect of the variable of interest.
This creates a serious problem for applied rese@bbkerving a relatively stable coefficient
of interest across models which successively initecblocks of control variables typically
leads researchers to the conclusion that the aeégiersistent” and robust to the addition
of control variables (see our simulation examgfethermore, even if researchers find that
the controlled effect is smaller than the uncotgEffect, the difference may nevertheless
be underestimated because of rescaling. The saesefgoaverage partial effects, which up

until now have been claimed to be insensitive tecaéng. In any of these cases

2 This happens when bojtt andx, y* andz, andx andz are all positively correlated, e.g., whghis passing
an educational thresholdjs some parental background characteristic,zdaaognitive ability.
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conclusions about the impact of confounding cartojustifiedunlesswe use the method
proposed in this paper. And, as we noted at theetuthe problem we address here is not
confined to binary logit or probit models: it apgdito all non-linear models for categorical
or limited dependent variables (such as the comgteany log-log) and it occurs in all
applications that use logit or probit models (sashliscrete time event history models) and

their extensions (such as multilevel logit modeld enultinomial logits).
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Appendix: Proof of equation (19)

In this appendix we prove equation (19). We shoat testingb,,, —b ,,=0 amounts to

testingb,,, =0, because it holds that:

byx[2 - by)Uz: byzg 2 (A1)
where 8, is a linear regression coefficient relatxtp z. z= &, x+ |, wherel is a random

error term. (A1) says that the part of therelationship confounded kymay be expressed
as the product of the logit coefficient relatingo y net of x, and the linear regression

coefficient relatingx to z. Wheneverb,,, =0, (Al) equals zero and thus, sinbg, is

testing b, =0 amounts to

measured on the same scale as the differdpce-b |2k

yxdz?
testing whether the differends, , - b, ., is zero.

However, the equality in (A1) must hold in order the test to be effective.
We therefore prove that the equality in (Al) hol&8sploiting the derivations for linear
models by Clogg, Petkova, and Haritou (1995) ardntiethod developed in this paper, we

have that

ﬂyz. X
S

y*
M, (r,—r —
_ ﬂyx[z _ ﬂy)ﬂz _ xz\' yz xg y>) s

z
yXiz ’
o o

where r; denotes the correlation between variablesdj, andsc denotes the standard

deviation of variabl&. From simple definitions we find that:

byzj gxz
Sy S S,
b8 (ry*x_ry*i’xz)fr o rxz(r A y)i
byZDﬂxz = = o SX Sz = ’ g Sz = byxﬁ - by)Gz-

o o O¢
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We have thus proved the equality in (A1) and shtvat, in the three-variable case, (19) is
a test of the significance of confounding net adcading. In Karlson, Holm, and Breen

(2010) we exploit the property in (Al) to develomew method for decomposing total

effects into direct and indirect effects for logid probit models.
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Table 1. Normal and y-standardized logit coefficients from the two models

Model 1 Model 2
b, By B b
X 0.360 0.195 0.466 0.166
z - - 0.947 0.336
SD(V) 1.849 2.815
Pseudo-R 0.022 0.188
Table 2. Theeffect of x on y from simulated data. Probit coefficients.
Model 1 Model 2 Model 3
(2) (2)
Coef. SE Coef. SE Coef. SE
X 0.252 0.029 0.254 0.039 0.475 0.041
Zor Z - 0.244 0.010 0.244 0.010
Intercept 0.002 0.028 0.020 0.037 0.001 0.037
Pseudo-R 0.028 0.478 0.478

Table 3. Controlling the effect of family income on high school graduation. L ogit-

coefficients (robust standard errorsin parenthesis)

M1 M2 M3 M4 M5
Controls None z Z z 7
Family income 0.935 0.754 1.010 0.386 2.188
(0.032) (0.034) (0.033) (0.042) (0.093)
Academic ability 0.672 0.672 0.298 0.298
(0.042)  (0.042) (0.050) (0.050)
' . 0.856 0.856
Father’'s education (0.092)  (0.092)
) . 2.936 2.936
Mother’s education (0217)  (0.217)
1.981 2.132 2.132 4,298 4.298
Intercept (0.035)  (0.040) (0.040) (0.188) (0.188)
Pseudo-R 0.138 0.180 0.180 0.421 0.421
LogL -3021.5 -2872.8 -2872.8 -2028.6  -2028.6

N = 8,167
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Table 4. APE counterpartsto logit coefficientsin Table 3 (robust standard errorsin
parenthesis)

M1 M2 M3 M4 M5

Controls None Z 7 z 7

0.1043  0.0806 0.1080 0.0301 0.1704
(0.0034) (0.0035) (0.0033) (0.0034) (0.0031)
0.0718  0.0718  0.0232  0.0232
(0.0044) (0.0044) (0.0040) (0.0040)

0.0666  0.0666

(0.0071) (0.0071)

0.2286  0.2286

(0.0114) (0.0114)

Family income
Academic ability
Father’s education

Mother’s education

N = 8,167
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